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Abstract

In the past neuroscience has focused on explaining the function of single
neurons, but now more and more interest is directed towards the local in-
teractions between neurons. This leads to greater demands on spike sorting
algorithms to cope with strongly correlated neurons which predominantly
produce overlapping spikes.

While existing spike sorting algorithms work in two stages: the first to
identify spike times and the second to cluster the found spike shapes, we
propose an algorithm based on the expectation-maximisation (EM) algorithm
which iterates between finding spike times given an estimate of spike shapes
and estimating spike shapes given the current spike times. Overlapping spikes
are automatically resolved in this framework and contribute to the learning
process.

Because the computations involved in the original formulation of the al-
gorithm are prohibitive, we further propose three approximations. Two of
them have severe problems with local optima. Although the third overcomes
these, this is payed for by a deviation from the original problem setting
which proposed correction leads to bad convergence behaviour. Additionally
we discuss possible improvements of the third approximation.

We define performance in terms of recall and precision. The algorithm is
tested and compared to other algorithms on a test data set which has been
previously published and very closely resembles real data. On average our
algorithm correctly finds a bit less than 2 out of 3 spikes with considerable
variation to the better and lower mainly depending on the spike shapes, the
number of cells in the data and the noise level. The performance of one of
the tested clustering algorithms is often better, although not much. Even a
simple matched filter approach often performs as well as our more compli-
cated algorithm. On the other hand, clustering and matched filter exhibit a
large drop in performance when only overlapping spikes are considered while
the performance of our algorithm stays equal.

In conclusion we find that our algorithm works not as good as wished,
but automatically handles overlapping spikes as expected.



1 Introduction

How does the activity of single neurons in the brain lead to achievement of
the various tasks that we are confronted with in daily life? To answer this
ultimate question neuroscientists are recording the activity of single neurons
and relate it to all kinds of behavioural tasks. Most commonly used is the
so-called extracellular recording in which an electrode is guided near to single
neurons, but not into them. An advantage of that practice is the ability to
record more than one neuron with the same electrode at the same time. Ac-
tually this has long been seen as a disadvantage, because it makes necessary
to establish cell identities through the characteristic shape of their spikes
which is hard with the naked eye. This is the task of spike sorting.

When a neuron is active, it generates a spike which can be seen in the ex-
tracellular potential recorded by an electrode. The spikes of different neurons
usually have a different characteristic shape and this enables us to extract
the time at which the neuron was active by finding the characteristic shape
in the extracellular recording. The problem is that the characteristic spike
shapes are unknown and have to be found from the recording as well. Of
course, there is also a lot of noise in the recording some of which is discarded
by high-pass filtering with a suitable cutoff near the minimal spike shape
frequency.

The spike sorting methods, that we know of, all work in two stages. In the
first stage spikes in the recording are detected, aligned according to a certain
feature like their peak and extracted from the recording. In the second stage
the extracted spikes are clustered. For a review see Lewicki (1998). Once the
first stage has been done successfully the clustering methods which are around
are reasonably good (Quiroga et al., 2004; Harris et al., 2000; Rutishauser
et al., 2006).

A special case that clustering methods can not handle is the case of over-
lapping spikes in the recording. These result when two cells are active at very
close times. Such interactions will not fit in any cluster which is supposed to
represent the characteristic shape of a single cell. Sometimes they are simply
discarded as outliers, but this clearly has an effect on estimates of correla-
tions between neurons (Bar-Gad et al., 2001) which are studied more and
more to reveal how neighbouring neurons interact. Other methods of han-
dling overlapping spikes after clustering have been proposed (Lewicki, 1994;
Sahani, 1999; Takahashi et al., 2003), but since they rely on the clustering
result they will fail when overlapping spikes are predominant in the data, for
example because of strong correlations between recorded neurons.

Here we report about various variations of an algorithm which is designed
to naturally handle overlapping spikes. The following sections explain the
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algorithms, subsequently we present the performance of them on several test
data sets and compare it to that of clustering methods in section 3.

2 Algorithms

The algorithms presented here are based on an iterative expectation-maximisation
(EM) scheme which differ from earlier EM approaches in spike sorting in that
they explicitly learn spike times as well as spike shapes. we will explain this
idea and the underlying model in the next subsections. Three different, but
related, approximate approaches to EM are shown. Following on that we
will demonstrate how the problem can be reformulated to fit a quadratic
program (QP) solver (2.3), describe a way of limiting the problem size to
make it feasible for existing QP solvers (2.4) and discuss extensions to the
model which have been considered (2.5).

2.1 Probabilistic Model

If two spikes overlap, the resulting waveform can be seen as the sum of two
single spike waveforms which can be shifted with respect to each other. The
main variables in this scenario are thus the spike times describing the shift
and the single spike waveforms which we call spike shapes. Here we introduce
the model which describes in a probabilistic framework how these variables
supposedly interact to produce the recorded waveform.

Our model is adopted from Sahani (1999). The recorded waveform, v,
constitutes its set of observable variables, the spike times, τ , constitute its
hidden variables and the spike shapes, w, are parameters of the model. We
are trying to capture the joint distribution of observable and hidden variables
given all parameters, θ, which include w

P (v, τ |θ) = P (v|τ , θ)P (τ |θ) (1)

The terms on the right hand side are not dependent on all the parameters
collected in θ. Where necessary we will make the dependent parameters
explicit.

A reasonable first idea for a prior over spike times is a homogeneous
Poisson process prior

P (τ |λ) = e−λT λn (2)

where T is the length of the time span that we consider and n is the number
of spikes in that interval. we focus on the prior in subsection 2.5, so let us
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have a closer look at the posterior probability of the recorded waveform given
the spike times P (v|τ , θ).

We assume that the recorded waveform consists of a linear superposition
of many spike waveforms, most of which only appear as background noise
and some occur as the foreground spikes we are aiming to identify. This
assumption of linear additivity of spikes has been reported to hold for a
recording from the locust lobula (Wehr et al., 1999) and makes intuitive
sense, because currents add linearly, too. Hence, given we know the spike
times, the recorded voltage at time t is a random variable with value

v(t) = η(t) +
N∑

i=1

∫
t′

w(t− τi)δ(t− τi − t′) (3)

where N is the number of spikes and η(t) is a random noise variable deter-
mining the noise at time t. Instead of handling each spike, τi, separately
we introduce a time-dependent indicator variable which is 1 at the time of a
spike and 0 everywhere else

ρ(t) =
N∑

i=1

I(t− τi) I(x) =

{
1 x = 0
0 x 6= 0

(4)

We also note that eq. (3) corresponds to a convolution, so we can write in
short

v(t) = (w ⊗ ρ)(t) + η(t). (5)

Up to here we are only modelling a single cell with spike shape w, but for our
application only recordings with more than one cell are interesting. Therefore
we introduce as many spike shapes in our model as we expect to find in the
recording (C)

v(t) = η(t) +
C∑

c=1

(wc ⊗ ρc)(t). (6)

The distribution of v is determined by the distribution of the noise. We are
using a Gaussian process with zero mean as an approximation and get

P (v|ρ,w, K) ∝ exp

[
−1

2

∫
t

∫
t′

(
v(t)−

∑
c

(wc ⊗ ρc)(t)

)
K−1(t, t′)

(
v(t′)−

∑
c

(wc ⊗ ρc)(t′)

)]
.

(7)
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Although this approximation is not true in all cases, it often suits well enough
(Sahani, 1999). We are further restricting the model to decorrelated noise
and simplify to

P (v|ρ,w, σ) ∝ exp

− 1

2σ2

∫
t

(
v(t)−

∑
c

(wc ⊗ ρc)(t)

)2
 . (8)

This simplification introduces a drawback in our model, because it is known
that the background noise is locally correlated (see section 3.2.2). However,
we accept this loss of accuracy in favour of a gain of simplicity for the moment.

The model is expressed in terms of a continuous variable, but actually
we are only handling data which has been sampled and digitised. Thus we
write down the discrete version of eq. (8) as

P (v|ρ,W, σ) ∝ exp

− 1

2σ2

∑
t

(
vt −

∑
c

(wc ⊗ ρc)t

)2
 (9)

and note that v becomes a vector, ρ becomes a matrix1 and vectors are
indexed by subscript. The convolution of two finite vectors is a bit differently
defined than the infinite, continuous version above, but we defer the exact
explanation of it to section 2.3 where we present the implementation of the
algorithm.

In the discrete space the homogeneous Poisson process prior becomes

P (ρ|π) =
∏

c

∏
t

πρc
t (1− π)1−ρc

t . (10)

Here π is the probability with which a cell spikes within the time interval
defined by a single sample and we assume that each cell spikes with equal
probability.

In summary, equations (9) and (10) define our final model. We assume
constant spike shapes which linearly superpose, we assume additive, zero-
mean, decorrelated Gaussian noise and we work in discrete space. The next
subsection shows how spike shapes and times can be learned within this
model.

2.2 Learning: Approximate EM

Our model, as given in eqs. (1) and (9) in the last subsection, is a prob-
abilistic latent variable model. The standard way of learning within these

1this can actually not be seen, because there is no capital letter ρ in latex
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models is the expectation-maximisation (EM) algorithm (see e.g. Bishop,
2006). Given some data from the visible variables it iterates between infer-
ring the posterior distribution for the latent variables while the parameters
are fixed (E-step) and learning parameter values given a fixed setting of the
posterior distribution (M-step).

In particular, the EM algorithm is a maximum-likelihood approach for
parameter learning, but instead of maximising the likelihood directly, which
would not be tractable, it is working on the free energy, a lower bound on
the log-likelihood, L,

F(q, θ) =

∫
ρ

q(ρ) log
P (v, ρ|θ)

q(ρ)
(11)

= L(θ)−KL[q(ρ)‖P (ρ|v, θ)] (12)

= 〈log P (v, ρ|θ)〉q + H(q) (13)

Here KL is the Kullback-Leibler divergence measuring the difference between
two distributions, q is an arbitrary distribution defined over ρ, H is the
entropy and 〈·〉q is the expected value with respect to distribution q.

In the E-step the free energy is maximised with respect to q. From equa-
tion (12) we can see that this is the case for q(ρ) = P (ρ|v, θ), because the
KL divergence is 0 there and positive everywhere else. Hence we would have
to compute the posterior distribution of the latent variables in the E-step by

P (ρ|v, θ) =
P (v, ρ|θ)

P (v|θ)
=

P (v|ρ, θ)P (ρ|θ)∑
ρ P (v|ρ, θ)P (ρ|θ)

, (14)

but the number of operations needed to compute the sum over the values of
ρ increases exponentially with the number of spike times that one considers
and the prior, P (ρ|θ), is not a Gaussian distribution. Therefore computing
P (ρ|v) directly is not tractable.

In the M-step we maximise the free energy with respect to parameters,
θ. Consider eq. (13). Because the entropy of a fixed q is not dependent on
the parameters, maximising the free energy with respect to parameters is
equivalent to maximising

〈log P (v, ρ|θ)〉q = 〈log P (v|ρ, θ)〉q + 〈log P (ρ|θ)〉q (15)
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with

〈log P (v|ρ, θ)〉q =

〈
k1 −

1

2σ2

∑
t

(
vt −

∑
c

(wc ⊗ ρc)t

)2〉
q

= k2 −
1

2σ2

∑
t

〈(∑
c

(wc ⊗ ρc)t

)2〉
q

− 2vt

〈∑
c

(wc ⊗ ρc)t

〉
q

 .

(16)

A further look on the terms over which we take the expectation with respect
to q 〈∑

c

(wc ⊗ ρc)t

〉
q

=

〈∑
c

∑
t′

wc
t′ρ

c
t−t′

〉
q

=
∑

c

∑
t′

wc
t′

〈
ρc

t−t′

〉
q

(17)

〈(∑
c

(wc ⊗ ρc)t

)2〉
q

=

〈(∑
c′

∑
t′

wc′

t′ ρ
c′

t−t′

)(∑
c′′

∑
t′′

wc′′

t′′ ρ
c′′

t−t′′

)〉
q

=
∑
c′,c′′

∑
t′,t′′

wc′

t′ w
c′′

t′′

〈
ρc′

t−t′ρ
c′′

t−t′′

〉
q

(18)

shows that we need q to calculate the expectation of the spikes, 〈ρc
t〉q, and

the expectation of their interactions, 〈ρc
tρ

c′

t′ 〉q, but the number of operations
needed to compute the expectation will increase exponentially with the num-
ber of spike times, too2. Hence, the standard EM-algorithm is doubly in-
tractable in this case, because q can not be set to the KL-minimising poste-
rior and even if we had q equal to the posterior, we could not compute the
expectations with respect to q. An approximation is needed as is provided
by the variational EM algorithm.

2.2.1 Variational EM

If we assume that a spike at a certain time is independent of a spike at
any other time given the observed data and the parameters, the posterior

2assuming that there is no suitable representation that can be used to skip summation
over all settings of spike times
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distribution and also q become fully factorised. In particular we have for q

q(ρ) =
∏

c

∏
t

qc
t (ρ

c
t) =

∏
c

∏
t

(rc
t )

ρc
t (1− rc

t )
1−ρc

t . (19)

In this case the expectations simply are

〈ρc
t〉q = rc

t

〈ρc
tρ

c
t〉q = rc

t

〈ρc
tρ

c′

t′ 〉q = rc
tr

c′

t′ |(c, t) 6= (c′, t′).
(20)

we will call the rc
t ”expected spike times”.

Of course, the assumption of independent spikes violates our intuitions
about the interactions between spikes. For example, if there is a waveform
generated from one spike of one cell at a certain time point in the data, then
putting that spike at the corresponding time point in our model will explain
away the waveform in the data. As a consequence spikes at nearby times
should be anti-correlated (we will look at this point from the perspective of
the prior in section 2.5.2). However, despite such shortcomings this assump-
tion is a well-known and efficient approximation which makes learning in
our model feasible. It is an example of a variational approximation (Jordan
et al., 1999) which in this form in which we use a fully factorised distribution
is also called mean field approximation.

The parameters in our model are the variance of the noise, σ2, the para-
meters introduced through the prior of the spike times, and the spike shapes,
W. We are estimating the first two separately as described in section 2.4.
Consequently we only have to learn the spike shapes in the M-step for our
model which becomes

arg max
W

F(q,W) = arg max
W

〈log P (v|ρ,W)〉q

= arg min
W

1

2σ2

∑
t

(
vt −

∑
c

(wc ⊗ rc)t

)2

.
(21)

Because the convolution is only a linear operation, we can see that the M-step
simplifies to least squares fitting when we use the mean field approximation.
Note that this equation is slightly wrong in that the quadratic, rc

tr
c
t , should

be replaced by its linear term, rc
t , in correspondence with eq. (20). we will

address this issue and the implementation in general in section 2.3.
We now see that the M-step becomes easy, but we still have to solve the

E-step. Equation (12) tells us to minimise the KL divergence between our
approximate distributions and the posterior of spike times in order to max-
imise the free energy in the E-step. Because we restrict ourselves to a certain
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set of distributions, there is no immediate solution to the minimisation of
the KL divergence anymore and we have to consider the actual optimisation
which is

arg min
q

KL[q(ρ)‖P (ρ|v, θ)] = arg min
q

∑
ρ

q(ρ) log
q(ρ)

P (ρ|v, θ)

= arg min
q

∑
ρ

q(ρ) log q(ρ)− q(ρ)P (ρ|v, θ)

= arg min
q
−H(q)− 〈log P (ρ|v, θ)〉q

and because P (ρ|v, θ) = P (v, ρ|θ)/P (v|θ), because the likelihood is inde-
pendent of q and using eq. (15) we finally have to minimise with respect to
q

F = −〈log P (v|ρ, θ)〉q − 〈log P (ρ|θ)〉q − H(q). (22)

So far we stayed general and have not used any of the properties of our
special q as given in eq. (19). Let us consider the contributing terms from
above in turn.

As seen before, the expected log-probability of the data under our ap-
proximation is

〈log P (v|ρ, θ)〉q = − 1

2σ2

∑
t

(
vt −

∑
c

(wc ⊗ rc)t

)2

. (23)

Because the convolution is linear, we can rewrite this as

〈log P (v|ρ, θ)〉q = − 1

σ2

(∑
c′

∑
c′′

1

2
(rc′

)>Hc′,c′′
rc′′

+
∑

c

(f c)>rc

)

= − 1

σ2

∑
c

∑
t

(
f c

t r
c
t +

1

2

∑
c′

∑
t′

rc
th

c,c′

t,t′ r
c′

t′

) (24)

where Hc′,c′′
and f c are the quadratic and linear coefficients which will be

derived in section 2.3.
The expected log-prior of the spike times from eq. (10) is

〈log P (ρ|θ)〉q =
∑

c

∑
t

rc
t log π + (1− rc

t ) log[1− π]

=
∑

c

∑
t

(log π − log[1− π])rc
t + log[1− π].

(25)
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and the entropy of q is

H(q) = −
∑

c

∑
t

rc
t log rc

t + (1− rc
t ) log[1− rc

t ]. (26)

Then, by substituting eqs. (24), (25) and (26) into eq. (22) we see that
minimising the KL divergence with respect to q is equivalent to minimising
the following with respect to R

F =
∑

c

∑
t

1

σ2

(
f c

t r
c
t +

1

2

∑
c′

∑
t′

rc
th

c,c′

t,t′ r
c′

t′

)
− (log π − log[1− π])rc

t − log[1− π]

+ rc
t log rc

t + (1− rc
t ) log[1− rc

t ].

(27)

By differentiation of F we derive the fixed point equations. Note that the
diagonals of Hc,c′

are zero, because the coefficients for the quadratic rc
tr

c
t have

been added to the linear coefficients (see section 2.3) in accordance with eqs.
(20).

∂F

∂rζ
τ

=
1

σ2
f ζ

τ +
1

σ2

∑
(c,t) 6=(ζ,τ)

rc
th

c,ζ
t,τ − log π + log[1− π] + log rζ

τ − log[1− rζ
τ ]

= log

[
rζ
τ

1− rζ
τ

]
+

1

σ2

∑
(c,t) 6=(ζ,τ)

rc
th

c,ζ
t,τ +

1

σ2
f ζ

τ − log π + log[1− π]

Setting the derivative to zero we can rearrange and get an equation which
solves for rζ

τ dependent on all other rc
t

rζ
τ = g

log

[
π

1− π

]
− 1

σ2

∑
(c,t) 6=(ζ,τ)

rc
th

c,ζ
t,τ −

1

σ2
f ζ

τ

 (28)

with g(x) = 1/(1 + e−x) being the sigmoid function. Each of the expected
spike times, rζ

τ , is then updated iteratively until the KL divergence does not
decrease anymore. It is not guaranteed that this will be a global minimum of
KL[q(ρ)‖P (ρ|v, θ)] and consequently the result depends on the initial values
for the expected spike times.

Finally, we arrived at a complete algorithm. The E-step sets the expected
spike times to the converged solutions of eq. (28) and the M-step uses them
to update the spike shapes according to eq. (21). The two steps are iterated
until the free energy converges.
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The original EM algorithm always converges to a maximum of the like-
lihood, because the E-step sets the free energy equal to the likelihood. By
restricting the set of distributions allowable in the E-step the free energy
can not be set equal to the likelihood anymore and correspondingly a found
maximum in the free energy will not be a maximum in the likelihood.

2.2.2 Assuming a Deterministic Posterior Distribution

The variational EM algorithm as described above is very efficient, but does
not give good solutions (see section 3.5). One reason for this is its sus-
ceptibility to run into local optima at various stages in the algorithm. We
propose further approximations under which we can find a good optimum
for expected spike times in the E-step.

In a first step we note from eq. (27) that our problem is quadratic, if the
entropy is zero for all choices of q. The entropy of a distribution is zero, if
it is deterministic, i.e. the probability for exactly one setting of the variables
is equal to one and for all other settings it is zero. In the case of fully
factored q this means that all expected spike times, rc

t , should be either 0
or 1. Therefore instead of minimising eq. (27) for continuous expected spike
times we now have

F =
∑

c

∑
t

1

σ2

(
f c

t r
c
t +

1

2

∑
c′

∑
t′

rc
th

c,c′

t,t′ r
c′

t′

)
− (log π − log[1− π])rc

t − log[1− π]
(29)

F = −〈log P (v|ρ, θ)〉q − 〈log P (ρ|θ)〉q
= −〈log P (v, ρ|θ)〉q
= −〈log P (ρ|v, θ)〉q − log Z

(30)

which has to be minimised for binary expected spike times. At the same time
we see that we are actually maximising the expected log-posterior probabil-
ity of the spike times. With a deterministic q the expected log-posterior
probability is simply the log-posterior probability of the spike times, ρ, for
which q(ρ) = 1. In other words, minimising KL[q(ρ)‖P (ρ|v, θ)], when q is
constrained to be deterministic, is equivalent to finding the most probable
spike times given the data. This is exactly what we are finally looking for.
Note that we do not have to compute the (intractable) normalising constant
for the posterior probabilities, because we are only interested in the position
of the maximum which stays the same for any uniform scaling.
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Also note that we actually do not have to assume that q is fully factored to
get the relationship between q and most probable spike times, but it has to be
deterministic. This assumption of determinism seems very drastic, because
we take away the uncertainty out of our probabilistic model. However, when
spike shapes are sufficiently different and the noise is comparably small, we
expect to be very certain about a particular posterior setting of spike times,
especially considering the anti-correlation between spikes. Therefore, we ex-
pect this assumption to be reasonably faithful. Additionally we tested the
hypothesis of (quasi-)deterministic posterior probabilities for very small sets
of spike times on an example data set and got confirmed. See section 3.1 for
procedures and results.

One could use genetic algorithms for optimisation in this binary space.
This would have the advantage that we would not have to make further
assumptions. But it is hard to tweak the parameters of genetic algorithms,
they are not guaranteed to find the global optimum and they are very slow.
Additionally, since the posterior is near zero for almost all sets of spike times,
we are facing a very difficult optimisation problem, because the space in which
we optimise hardly gives any hints about the position of the optimum and
genetic algorithms usually do not work well in these situations.

Instead we make use of the mean field approximation again. If we had rc
t

continuous instead of binary, we could use quadratic programming to find a
maximum of eq. (29), but this violates our assumption of determinism. How-
ever, if we have a closer look at 〈log P (ρ|v, θ)〉q which has to be maximised

∑
ρ

q(ρ) log P (ρ|v, θ) =
∑

ρ

log P (ρ|v, θ)
∏

c

∏
t

(rc
t )

ρc
t (1− rc

t )
1−ρc

t , (31)

we notice that the factor
∏

c

∏
t(r

c
t )

ρc
t (1− rc

t )
1−ρc

t , which has its maximum at
1 and falls off quickly, very strongly pushes towards a deterministic solution.
Furthermore, because log P is concave, the maximum of 〈log P (ρ|v, θ)〉q in
continuous space is where the maximum of P (ρ|v, θ) gets full support, that
is where R is the deterministic setting which is equal to the setting of ρ with
the highest posterior probability. Hence, the maximum in continuous space
is equal to the maximum in binary space. Consequently we can use quadratic
programming in continuous space to solve our binary problem.

Yet, there is one big problem: the quadratic program that we have to
solve is non-convex and hence it is not guaranteed that we find the global
optimum. Equation (20) tells us that the expectation of a quadratic spike
time is the posterior probability of a spike at that time (〈ρc

tρ
c
t〉q = rc

t ). This
means that there are no terms rc

tr
c
t in our quadratic problem and thus the
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corresponding hessian has only zeros in the diagonal, but such matrices are
non-convex as is shown in appendix A.

So we most likely get stuck in local optima. How are they characterised?
Because the posterior probability is zero or almost zero for most settings of
spike times and those settings add a very high cost to our objective function
(cf. (31)), a local optimum will most likely be a deterministic setting of the
expected spike times, rc

t , which selects the spike times with the largest pos-
terior probability in their neighbourhood. The selected spike times, however,
might have a very small posterior themselves.

2.2.3 A Related Convex Problem

To overcome the fallacy of such bad local optima we try to change our prob-
lem so we can easily find the global optimum of the new problem without
departing from the original problem too much. A change suggesting itself is
substituting 〈ρc

tρ
c
t〉q = rc

t with

〈ρc
tρ

c
t〉q = rc

tr
c
t . (32)

Then, minimising eq. (29) is equivalent to directly minimising

1

2σ2

∑
t

(
vt −

∑
c

(wc ⊗ rc)t

)2

−
∑

c

∑
t

(log π − log[1− π])rc
t

=
1

2σ2

∑
t

(
vt −

∑
c

(wc ⊗ rc)t

)2

+
∑

c

∑
t

log

[
1− π

π

]
rc
t

(33)

with respect to rc
t and we see that the quadratic terms all stem from the left

part which can be transformed into a least-squares problem and therefore is
convex.

We can interpret the two parts of eq. (33) in an intuitive way. The first
summand is responsible for fitting the data with scaled versions of the spike
shapes and the second summand adds a cost for large values of the expected
spike times which depends on the prior over spike times.

Clearly we want that the values for the expected spike times range be-
tween zero and one, 0 ≤ rc

t ≤ 1. Therefore, the analogy to least squares
fitting does not fully apply and we have to use a quadratic program solver
which allows bounds on the variables to be set. Given our bounds the second
summand of eq. (33) pushes the expected spike times towards zero and hence
leads to sparse results.

The diagonal in the new problem has been taken from the linear terms
in the old problem. We will see in section 2.3 that these entries are all

12



positive. In combination with linear terms positive values penalise large
expected spike times (compare contribution of the prior above), but when the
same positive values are combined with quadratic terms they penalise large
expected spike times proportionally more than small expected spike times.
As a result we find that solutions to our new problem tend to have several
non-zero expected spike times most of which are far from one. Such solutions
violate our assumption of determinism and do not fit the near-deterministic
posterior distributions reported in section 3.1.

We have two ways to correct for this outcome. First, we can seed the
optimisation for the original problem with the solution of the new problem.
Because the problems are similar, one would hope that the solution of the
latter lies in the vicinity of the global optimum of the former problem, al-
though this is not guaranteed at all. The second workaround simply sets
all expected spike times above a certain threshold to 1 and all others to 0,
thereby producing a deterministic result. If we still interpret the value, rc

t ,
coming out of the new problem as the posterior probability that there is a
spike of cell c at time t, then a threshold of 0.5 is a good candidate, because
this would choose the setting of spike times with the greatest probability.

There is a completely different interpretation of the new problem setting.
Indeed it is hard to relate the here presented convex problem to its non-
convex brother from the last section, because it is unclear how the new rc

t

relate to that of the mean field approximation. Alternatively, we can look at
the minimisation of the error as depicted by eq. (33) as an optimal method to
find times at which a spike with a given shape occurs in a scaled version. For
the learning in an EM-framework, however, we need estimates of the expected
spike times for the M-step. So we can use our noise model to calculate the
probability, rc

t = P (ρc
t = 1|sc

t ,w
c), of there being a spike of a certain cell at a

certain spike time given that our convex problem found a spike of that cell at
that spike time which is scaled by sc

t , where sc
t is part of the solution of our

convex optimisation problem which we originally called rc
t above. In other

words, we are estimating the probability that there is a genuine spike in the
data, but that the noise is responsible for scaling it by sc

t . The formulas are

P (sc
t |ρc

t ,w
c) ∝ exp

[
− 1

2σ2
‖ρc

tw
c − sc

tw
c‖2

]
(34)

then

P (ρc
t = 1|sc

t ,w
c) =

P (sc
t |ρc

t = 1,wc)P (ρc
t = 1)∑

ρc
t
P (sc

t |ρc
t ,w

c)P (ρc
t)

=
P (sc

t |ρc
t = 1,wc)π∑

ρc
t
P (sc

t |ρc
t ,w

c)πρc
t (1− π)1−ρc

t

(35)
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where π stems from the prior in eq. (10). More abstractly we can write the
calculated probabilities as a function of the scalings that we found, rc

t =
gwc(sc

t), and it turns out that this function is a very steep sigmoidal centred
at 0.5. So, on a completely different route we again arrive at thresholding
the solution of optimisation.

However we motivate any kind of supplementary thresholding of optimi-
sation results, it represents a jump to a different part in the optimisation
space which may have, and in the convex case certainly has, a worse objec-
tive function value. Therefore, the very nice property of the EM-algorithm
is lost that it is proven to increase free energy, or decrease error in our case,
in every step. As a result, convergence of this algorithm with thresholding
is not guaranteed. An example of the convergence behaviour can be seen in
figure 1.
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Figure 1: Two example runs of the convex problem algorithm without and with
thresholding on the same data set. The runs have been stopped when the error
changed by less than 0.01. Without thresholding the algorithm decreases the error
in every step. This is not true for some steps in the plot. These are due to the
inability of the MINQ QP-solver to find the global minimum of our convex problem
in some cases. With thresholding the algorithm moves freely in error space until
converging at a non-optimal point.

Since it is not at all clear anymore when the algorithm is best stopped
except in retrospect, we are introducing a heuristic stopping criterion. We
stop when the best achieved error has not been changed for the last 10
iterations and return the solution which produced this minimal error. This
was chosen as a trade-off between running time and achieved minimal error
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and is motivated by the informal observation that the performance of the
solution as defined in section 3.3 does not significantly increase after the
criterion is met, even if the error is further reduced.

Despite all shortcomings we find that the convex optimisation with thresh-
olding is the best of the three algorithms in recovering spike shapes in the
data, but still performs worse than clustering methods. we report detailed
results in section 3, but before proceeding there we present details of the
implementation and further considerations to improve the algorithm.

2.3 Reformulation as Quadratic Program

In the presentation of the algorithm we repeatedly derived quadratic sub-
problems (see eqs. (21), (29) and (33)). The variables we want to optimise,
however, occur within a convolution, (wc⊗ rc)t, and need to be separated to
finally fit the quadratic programming formulation

1

2
r>Hr + f>r (36)

The convolution for discrete, finite vectors wc and rc which have elements
w0, . . . , wTw and r0, . . . , rTr is defined as

(wc ⊗ rc)t =

T (t)∑
i=t0(t)

wirt−i (37)

with t0(t) and T (t) chosen such that the vector borders are not violated

t0(t) = max(0, t− Tr) T (t) = min(Tw, t)

Using this definition we will now examplarily show how we can transform
eq. (33) to the quadratic form of eq. (36). First we repeat eq. (33) and
simultaneously substitute log[(1− π)/π] by a to ease the writing

1

2σ2

∑
t

(
vt −

∑
c

(wc ⊗ rc)t

)2

+ a
∑

c

∑
tr

rc
tr

Multiplying out the quadratic term gives

1

2σ2

∑
t

v2
t − 2vt

∑
c

(wc ⊗ rc)t +

(∑
c

(wc ⊗ rc)t

)2

+ a
∑

c

∑
tr

rc
tr

The term v2
t is constant in our optimisation problems, so we ignore it from

here.
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2.3.1 Linear Part

For now let us only look at the linear term of the quadratic

1

σ2

∑
t

−vt

∑
c

(wc ⊗ rc)t

Substituting in the definition of the convolution we get

1

σ2

∑
t

−vt

∑
c

T (t)∑
i=t0(t)

wc
i r

c
t−i

This has to be transformed into

− 1

σ2

∑
c

∑
tr

gc
trr

c
tr

So finding f c
tr corresponds to finding those vt and wc

i for which t − i = tr
which is

gc
tr =

Tw∑
i=0

wc
ivtr+i (38)

You can imagine this as moving a window of the length of the spike shapes
over the data and taking the inner product of this with the spike shapes, or
alternatively as the centre part of the convolution between the reversed spike
shapes and the data which corresponds to a matched filter on the data.

Now we can reintroduced the term from the prior

− 1

σ2

∑
c

∑
tr

gc
trr

c
tr + a

∑
c

∑
tr

rc
tr

and see that we finally get

1

σ2

∑
c

∑
tr

f c
trr

c
tr =

1

σ2

∑
c

∑
tr

(aσ2 − gc
tr)r

c
tr (39)

which is in vector form
∑

c(f
c)>rc/σ2.

2.3.2 Quadratic Part

For the quadratic term the procedure is a bit more complicated, but similar.
We have

1

2σ2

∑
t

(∑
c

(wc ⊗ rc)t

)2

=
1

2σ2

∑
t

∑
c′,c′′

T (t)∑
i,j=t0(t)

wc′

i wc′′

j rc′

t−ir
c′′

t−j
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Here we need to get to the form

1

2σ2

∑
c′,c′′

∑
t′r,t′′r

rc′

t′r
hc′,c′′

t′r,t′′r
rc′′

t′′r

So we have to find those wc′
i and wc′′

j for which we get t − i = t′r together
with t− j = t′′r . For t′r = t′′r = tr these are

hc′,c′′

tr,tr =
Tw∑
i=0

wc′

i wc′′

i = wc′>wc′′

Note that for c′ = c′′ this is a sum of squared terms which is either positive
or zero. When t′r 6= t′′r the sums over i, j are offset. Let ∆tr = t′r − t′′r , then

hc′,c′′

t′r,t′′r
=

Tw−∆tr∑
i=0

{
wc′

i wc′′
i+∆tr

∆tr > 0
wc′

i+∆tr
wc′′

i ∆tr < 0

Thus we see that the values of h are equal along the diagonals. Another way
to look at this is to note that each column (or row) contains the convolution
of the reversed wc′

with wc′′
such that the centre of the convolution is at the

diagonal of Hc′,c′′
, that is at hc′,c′′

tr,tr .

2.3.3 Combining Cells

So far we have found the formulation

1

σ2

[
1

2

(∑
c′,c′′

rc′>Hc′,c′′
rc′′

)
+
∑

c

f c>rc

]

Because we sum over cells, it is equivalent to concatenate the f cs and Hc′,c′′
s

to form one H and f to get the final quadratic programming formulation

1

σ2

[
1

2
r>Hr + f>r

]
with

r =

 r1

...
rC

 H =

 H1,1 . . . H1,C

...
. . .

...
HC,1 . . . HC,C

 f =

 f1

...
fC


with Hc′,c′′

= (Hc′′,c′
)> and C being the total number of cells in the problem.
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We also presented problems (sections 2.2.1, 2.2.2) in which the quadratic
terms rc

tr
c
t have been replaced by the linear term rc

t . It is very easy to convert
between these two settings as we only have to take the diagonal entries of H
and set them to zero while also adding them to eq. (39) in the following way

f c
tr = aσ2 − gc

tr + hc,c
tr,tr .

This completes the reformulation of our particular quadratic problem
into a form which can be used with standard QP-solvers. We tried out
two such solvers, the Matlab (Optimization Toolbox) solver quadprog and
freely available MINQ by Arnold Neumaier, University of Vienna3. Although
MINQ is considerably faster than quadprog and usually gives correct results,
sometimes the solution it finds depends on the seed that it has been given,
even if the problem is convex. Due to this inconsistency the results we report
are obtained with quadprog unless stated otherwise.

2.3.4 Spike Shapes

The above derivation has been done for optimising the spike times r. How-
ever, since (wc ⊗ rc)t = (rc ⊗wc)t, the same applies for the spike shapes w
with the exception that we have no contribution from the prior in that case.
Thus we get

f c
tw = −

Tr∑
i=0

rc
ivtw+i

and

hc′,c′′
(t′w, t′′w) =

Tr−∆tw∑
i=0

{
rc′
i rc′′

i+∆tw
∆tw ≥ 0

rc′
i+∆tw

rc′′
i ∆tw < 0

with ∆tw = t′w − t′′w.
When rc

tr
c
t is again replaced by rc

t , then this has only an effect on the
diagonal elements hc,c

tw,tw = rc>rc which have to be replaced by

hc,c
tw,tw =

∑
tr

rc
tr

Note, however, that this has no effect, if rc
t is binary.

3www.mat.univie.ac.at/∼neum/software/minq/
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2.4 Spike Detection

For a recording of 1 minute length which has been sampled at 30kHz we have
to consider 1.8 million spike times for each cell (rc

t , t ∈ {1, . . . , 1.8e+6}). No
ordinary QP-solver can handle such big problems. Usually, however, the
recordings exhibit long stretches containing only noise and no foreground
spikes. These parts of the signal are uninteresting for us, because we know
that there are no spikes at the corresponding spike times, that is rc

t = 0 for
all t responsible for these parts. Therefore we want to skip stretches of pure
noise and only consider patches which contain some activity.

This aim is very similar to spike detection done in combination with
clustering approaches to spike sorting. The difference being that we do not
have to choose a fixed-size window which is exactly positioned relative to the
spike, but rather we only have to make sure that the window contains all
spikes which might have an influence on each other.

The detection of spikes is usually reduced to the detection of time points
at which the recorded potential crosses a certain threshold (see e.g. Sahani,
1999; Lewicki, 1998). An obvious candidate for the threshold is a multiple
of the noise standard deviation, σ. Let us for the moment assume that we
know it. Quiroga et al. (2004) found that a threshold of 4σ works well in
practice. We use the same threshold on the absolute value of the recorded
waveform.

To ensure that all spikes which overlap with each other fall into one
window we require that all threshold crossings which lie within the length of
a single spike must lie in the same window. The length of a single spike, Tw,
is a free parameter of our model, but its choice is not so critical as long as it
is large enough. We set it to something which is equivalent to 3ms or 2.67ms
in accordance with the data that we got (see section 3.2).

When we found the set of threshold crossings which are close to each other
in the sense just defined, we select the window containing them by choosing
all time points starting at ts time points before the first threshold crossing and
ending at te time points after the last threshold crossing where ts = 1

3
Tw + 5

and te = 2
3
Tw + 3. A single spike, for example, crosses the threshold with a

section from its peak, about the same number of time points left and right
of the peak; taken together, say, nt threshold crossings. Our definition of the
window then implies that the peak is at about 1/3 of the length of the spike
and that we consider 5 + 3 + nt spike times as possible times for the spike
to have occurred. The numbers 5 and 3 have been arbitrarily chosen so as
to increase the tolerance to noise changing the threshold crossings. They are
not higher, because increasing the size of the window also increases the time
until the QP-solvers find the optimum. Below we will denote all the windows
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selected in that way as regions of interest.
We still need an estimate of the noise standard deviation. If we assume

that spikes are relatively rare events, calculating the standard deviation of
the complete signal might be a viable approach. Quiroga et al. (2004), how-
ever, show that with increasing spike rate the complete signal standard de-
viation increasingly over-estimates that of the noise. They propose to use
σ = median(|x|/0.6745), but we resort to an iterative approach. We calcu-
late the standard deviation of the complete signal and use that to find a first
set of regions of interest which then get excluded from the data points used
to calculate a new estimate of the standard deviation. This is repeated until
the estimate does not change anymore.

2.5 Constraining Solutions by Choice of Priors

We have seen in section 2.2.3 that the homogeneous Poisson process prior
leads to a term in our objective function which facilitates sparse results. In
this section we discuss changes to the terms contributed by the prior which
might improve results for the convex problem.

2.5.1 Quadratic Sparsity

One problem is that small values are disproportionately preferred to large
values. We can change the sparsity term from the homogeneous Poisson
prior which was

a
∑
c,t

sc
t

to the quadratic term

a
∑
c,t

sc
t(1− sc

t) (40)

which prefers both, values near 0 and values near 1, but penalises everything
in between.

Amending the objective function with the new sparsity term hardly changes
the implementation. In the QP-formulation only a diagonal matrix has to be
subtracted from H to account for the additional quadratic term −as2. So we
are simply reducing the penalty, that we introduced by filling in the diagonal
of H, by a fixed amount and may even turn it into a reward.

It comes to mind that we loose convexity when we do this, but this
depends on the properties of H and the size of a. The matrix that has to
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be subtracted is A = awe. H can be decomposed into its eigenvalues and
-vectors as H = VDV>. Then

1

2σ2
H−A =

1

2σ2
VDV>−awe =

1

2σ2
VDV>−aVV> = V(D−2σ2awe)V>

Since H is positive semi-definite its eigenvalues in D are either zero or posi-
tive. Hence, for 1

2σ2H−A to be positivesemi-definitee, that is for our problem
to be convex, the smallest eigenvalue of H has to be greater than 2σ2a. Un-
fortunately, H is usually not full rank, that means some eigenvalues are zero.
This is the case especially for larger regions of interest which contain more
than one spike. For them, any non-zero a makes the problem non-convex
again.

We could interpret a as a free parameter. Then we can choose a as
a trade-off between getting solutions that are more like the ones that we
expect and running into local optima. We find that results of the algorithm
with a ∈ [2, 6] may be marginally better than results found with the original
sparsity term (a ≈ 7), but this depends on the data set at hand which is
an indicator for problems with local minima. We also tried an annealing
approach in which we had consecutive runs of the algorithm with increasing
a which were seeded with the result from the previous run. The results were
not better than using a small a only, probably because the problems with
local minima become too severe for larger a.

Because the results are very similar for original and quadratic sparsity
(with small a) we only report results for the original sparsity which can be
interpreted as a homogeneous Poisson process prior. Note, however, that
these experiments have been done before we lately noticed that MINQ does
not always find the global optimum of a convex problem and we did not have
the time to rerun them with quadprog.

2.5.2 Refractory Period

Neurons have an absolute refractory period. This means that the cells that
we are considering do never spike in close succession where close succession is
1ms for most neurons. This criterion constrains the solutions that we expect
to get and thereby reduces the space of possible spike times. So it should
help us finding the correct spike times.

Again, we can extend the sparsity term that we got from our prior to
facilitate a refractory period by penalising spikes that occur in the refractory
period of another spike. A suitable formula is (neglecting a for simplicity)∑

c,t

sc
t

[
1 + A

T∑
τ=−T ,τ 6=0

sc
t−τ

]
=
∑
c,t

sc
t +
∑
c,t

T∑
τ=−T ,τ 6=0

Asc
ts

c
t−τ (41)
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where A determines the amount of penalty and T the size of the refractory
period; both are free parameters which have to be chosen, but if we want an
absolute refractory period we should set A = ∞.

Again, we have another quadratic term in the objective function which
only needs to be added to the existing one. This time, however, the matrix
that we have to add to H in a problem with only one cell has the form

A1,1 =



0 A A A 0 0 0
A 0 A A A 0 0
A A 0 A A A 0
A A A 0 A A A
0 A A A 0 A A
0 0 A A A 0 A
0 0 0 A A A 0


.

As shown in appendix A every matrix with only zeros in the diagonal is not
convex. Also, the sum of a convex and a non-convex matrix is not convex.
Therefore we get again caught in local minima. We could choose A very
small to be as near to convex as possible, but we found that in these cases
adding the refractory period has only limited effect. In all cases we did not
find improved results by adding the refractory period.

The question arises whether there is a different formulation that facilitates
a refractory period in our quadratic problem without making the problem
non-convex. But the formulation of a refractory period, first, is intrinsically
quadratic, because it is about the interaction between spikes and, second,
should not restrict putting a spike independent of other spikes in the same
way it restricts that for the interaction between two spikes. Hence we expect
every formulation of a refractory period to have a Hessian matrix with a
diagonal which makes it non-convex.

3 Results

3.1 Quasi-Deterministic Posteriors

In our algorithm we make the assumption that the posterior probability of
spike times (eq. (14)) is deterministic which means that there is one setting of
spike times which is certain and all others are impossible. As we are working
in a noisy setting this assumption seems not justified, but we find that the
idea is supported by our test data.

We took Quiroga’s fourth data set with σ = 0.1 and extracted all spikes.
The spike shapes in this data set are very similar, additionally we aligned
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them such that the largest peak is at the same position for each cell. The
result can be seen in figure 2.
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Figure 2: Aligned spike shapes from Quiroga shape set 4.

We restricted the calculation of the posterior to a window of 2 spike times
before and after the actual spike which resulted in 25·3 = 32768 possible
settings for the spike times (3 is the number of cells). This restriction is
unproblematic for isolated spikes, because we know from the shape of the
spikes that only spikes within the small window are able to explain the data.
For overlapping spikes which fall in this window the same reasoning applies,
but for overlapping spikes which are further apart the posterior can not be
reliably computed on this restricted set of spike times. As a consequence, we
do not have results on those overlapping spikes.

We find that the posterior of 82.2% (2136/2600) of isolated spikes have a
single peak which is greater than 0.95, 16.9% (440/2600) have two peaks
which are summed together greater than 0.95 and 0.9% (24/2600) have
three peaks which have together 0.95 probability. For the closely overlap-
ping spikes4 we got 57.1% (8/14) with a single peak, 28.6% (4/14) with two
peaks and 14.3% (2/14) with three peaks.

Here we used the original spike shapes which, of course, fit the data
nicely, but does the situation change when the spike shapes are very different

4two spikes count as closely overlapping when they are at most two time steps apart
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from those in the data? No. We tested with the spike shapes that we use
to initialise our algorithm on data from Quiroga (see figure ??). 69.7% of
isolated spikes have a single dominant peak in the sense from above, 26%
have two, 3.8% have three and 0.5% have four peaks. For closely overlapping
spikes it is 1–50%, 2–35.7% and 3–14.3%.

Because the spike shapes are very similar in this data set, we expected that
if there is a deviation from the hypothesis, then we find it here. With more
different spike shapes it should be even clearer which combination of them is
responsible for the data and therefore the posterior should become closer to
deterministic. On the other hand, if the noise level is increased, the posterior
should become less certain. Using Quiroga’s fourth data set with σ = 0.2, we
find an increase of uncertainty (isolated spikes: 1–25.2%,2–51.6%,3–15.2%,4–
6.6%,5–1%,6–0.2%,7–0.1% overlapping: 1–10.7%,2–39.3%,3–25%,4–17.9%,5–
7.1%)5, but it is still only a very few number of spike time settings which
dominate the posterior.

Although the posterior probability of spike times is not exactly deter-
ministic, this result shows that it is very close to deterministic. There are
only very few cases in which two settings of spike times have nearly equal
probabilities. In these cases the assumption of determinism throws away the
information about the uncertainty. Above all, however, the here presented
results signify the extremity of the space in which we have to find the opti-
mum. It does not really matter whether there are one, two, or three peaks in
an otherwise flat space of 2many values, it will always be hard to find them.

3.2 Synthetic Test Data

It is extremely hard to evaluate the result of a spike sorting algorithm on real
extracellular recordings of neurons, because in this case we do not know the
correct solution. There is the possibility to record simultaneously extracel-
lular and intracellular from single cells to have some controlling information
about the activity of single cells (see e.g. Harris et al., 2000; Wehr et al.,
1999), but such experiments are extremely hard to conduct and consequently
appropriate data sets are very rare.

Alternatively, we can generate test data ourselves which captures the
most important properties of the signal that we want to model. The obvious
advantage is that we know exactly the setting of parameters which generated
the data, for example the spike times, and we can freely manipulate them. On
the other hand, it may also be that the generated data misses an important

5Because this was a different data set, the total number of spikes changed: 2573 isolated
spikes, 28 closely overlapping.
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property of the real data, like correlations in the noise, which would influence
the performance of a spike sorting algorithm.

Next we present how we generate our own synthetic data. These have a
very simple noise model matching the choice in our model. Then we introduce
another, freely available data set which has been produced with more care
to fit real data more closely.

3.2.1 Inspired by a Data Set from Auditory Cortex

We have access to a data set recorded from the auditory cortex. With our
synthetic data we aimed to reproduce properties of that data set, especially
typical spike shapes and noise level.

The spike shapes extracellularly recorded from auditory cortex usually
have a narrow, negative peak which ascends to the positive and is followed by
a wider negative bow. As a convention, however, the signs are usually flipped
such that we have a positive first peak in accordance with the potential
within the cell which constitute the usual shape of an action potential. We
are reproducing this particular shape with the product of a cosine and an
exponential function in logarithmic time

w(t) = A cos(tl) exp(−tl/ω)

where A sets the height of the first peak, ω the height of the second in
relation to A, tl ∝ log(tτ) and tl ∈ [−π/2, 5π/2] and τ is a time constant.
Furthermore we are putting tl = 0 at a third of the total length of the spike
shape and tl = 5π/2 at the end of the spike shape. The resulting shapes
are very similar to the ones in the real data, although they obviously can
not reproduce all peculiarities due to their simplified nature. A comparison
between a single spike from real data and a synthetic one that closely matches
the real shape can be seen in figure 3. We are producing random spike shapes
by randomly choosing the parameters with A ∈ [0.06, 0.11], ω ∈ [5, 15] and
τ ∈ [0.1, 0.3].

We generate spike times from a discrete, homogeneous Poisson process
with mean firing rates of 24Hz, 30Hz and 39Hz at a sampling rate of 30kHz.
Subsequently we enforce an absolute refractory period of 1ms by shifting all
spikes which occur within a refractory period to the end of the refractory
period. The spike times are stored in ρc

t which is 0 unless cell c spikes at time
t then ρc

t = 1.
The full synthetic recording is made by convolving ρc and wc, summing

the result over cells c and adding uncorrelated Gaussian noise with standard
deviation σ = 0.008.
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Figure 3: A real spike shape found in a data set from auditory cortex (blue)
compared to a synthetic one (green, smooth) with parameters A = 0.1, ω = 7 and
τ = 0.18. Although they do not completely match, the main characteristics are
captured.
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There is an additional source of spike variability which is due to sampling,
because the actual time of spiking is very likely to fall between two samples.
This means that the spike shapes are ”microshifted” between samples by a
random amount. In spike clustering this leads to problems in alignment which
in turn lead to additional cluster variance (Lewicki, 1998; Sahani, 1999). We
want to test the effect of microshifts on our algorithms and therefore also
generate data with microshifts by upsampling existing data to 30 · 32 =
960kHz, introducing random shifts between 0 and 32 time steps on the spike
times, convolving those with the interpolated spike shapes, downsampling to
30kHz and finally adding the noise.

3.2.2 Data Set from Quiroga

The background noise in extracellular recordings to the greatest part6 consists
of superimposed spikes from many background neurons, none of which can
be identified individually. Given that those spikes have a certain shape as
well, it is very unlikely that the resulting noise is uncorrelated. And indeed,
Rutishauser et al. (2006) report that the autocorrelation of the background
noise for their data set is significantly different from 0 until about 1.2ms and
we observe similar autocorrelations in the data set from auditory cortex.

To reproduce the statistics of the noise most faithfully Quiroga et al.
(2004) build their test data from ”a database of 594 different average spike
shapes compiled from recordings in the neocortex and basal ganglia”. They
generate background noise by superimposing randomly selected shapes from
the database at random times and with random amplitudes. Then they add
a train of three distinct spike shapes (see figure 4) from the database at
times determined by a Poisson process with mean firing rate of 20Hz and
2ms refractory period. Noise and spike trains are scaled such that the noise
standard deviation is one of {0.05, 0.1, 0.15, 0.2} and the peak of the spikes
is at 1. All of this is done at a sampling rate of 96kHz and the result is
downsampled to 24kHz, thereby introducing random microshifts, too.

Rodrigo Quian Quiroga very kindly published all of the data sets from
his paper on his website. We transformed them in our data format and use
them to compare the performance of several spike sorting algorithms where
performance is defined in the following section.

3.3 Measures of Performance

There are three main kinds of errors that a spike sorting algorithm can make.
It can miss a spike completely, assign a spike to the wrong cell, or assign a

6after bandpass filtering

27



0 0.5 1 1.5 2 2.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time (ms)

−
po

te
nt

ia
l (

ar
bi

tr
ar

y)

shape set 1

0 0.5 1 1.5 2 2.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time (ms)

−
po

te
nt

ia
l (

ar
bi

tr
ar

y)

shape set 2

0 0.5 1 1.5 2 2.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time (ms)

−
po

te
nt

ia
l (

ar
bi

tr
ar

y)

shape set 3

0 0.5 1 1.5 2 2.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time (ms)

−
po

te
nt

ia
l (

ar
bi

tr
ar

y)

shape set 4

Spike Shapes in Quiroga Data

Figure 4: The 4 different sets of spike shapes that Quiroga used in his data.
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spike to noise. We quantify these errors with recall, Pr, and precision Pp

which are defined as

Pr =
TP

TP + FN
Pp =

TP

TP + FP
(42)

where TP is the number of true positives, that is the number of spike times
correctly assigned to 1 (rc

t = 1 and ρc
t = 1), FN is the number of false

negatives, that is the number of spike times falsely assigned to 0 (rc
t = 0

and ρc
t = 1), and FP is the number of false positives, that is the number of

spike times falsely assigned to 1 (rc
t = 1 and ρc

t = 0). Then TP + FN is the
real total number of spikes in the data and TP + FP is the total number of
spikes reported by spike sorting. Thus, recall is a measure for errors by not
finding spikes and precision is a measure for errors by assigning spikes where
there are none. Note, however, that we do not make an explicit difference
between not finding a spike and assigning it to the wrong cell. But when a
spike is assigned to a wrong cell, this will reduce recall and precision, while
not finding a spike will only reduce recall.

Because precision and recall are directly defined on the spike times which
have a sub-millisecond resolution (e.g. 0.04ms at 24kHz), these measures are
more sensitive to small shifts of spikes than we need. For example, when an
algorithm finds a spike at t, but it actually is generated at t+1, this will add
a false negative and a false positive without acknowledging the very close
match at all. Therefore, we also allow for shifts of spike times up to a given
number of samples s. As long as a spike of the correct cell is found within s
shifts from the original spike time, it is counted as true positive. If there are
two spikes of the correct cell within s shifts of the true spike, then one true
and one false positive is counted.

In clustering the spike shapes are carefully aligned within a fixed win-
dow according to a certain feature such as the centre of mass of the most
prominent peak. We do not have that. The presented algorithms are free to
shift the spike shapes within their container which is only defined by shape
length. Consequently, the spike shapes resulting from our algorithms may be
shifted with respect to the spike shapes used to generate the data (the peaks
are at different positions). Such a shift also means that the spike times are
shifted with respect to the original spike times, but into the opposite direc-
tion, which is a consequence of the convolution of spike times and shapes in
our model. We are accounting for these effects and establish cell identities
between original data and algorithm outputs by searching for the best match
between a shifted spike shape from the algorithm output and an original
spike shape. The shift and cell identity of the best match is recorded and
the spike times are adapted accordingly.
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3.4 Influence of Data Parameters

We want to test the influence of firing rate, microshifts, spike shapes and
number of cells on the performance of an algorithm which models spike time
explicitly. We do this examplarily for the convex E-step with thresholding.

The data that we use has the following properties. It is based on three
sets of spike shapes which are depicted in figure 5. Every set consists of 4
randomly generated shapes. For each set we produced spike trains with a
length of about 1.66s (50,000 samples) and firing rates of first 24Hz, then
30Hz and then 39Hz. To obtain data sets with less than 4 cells we chose
every permutation of 3, 2 and 1 cells and extracted the corresponding spike
shapes and times from the data with 4 cells. This means that we have 3 · 3
data sets with 4 cells, 3 · 4 · 3 with 3, 3 · 6 · 3 with 2 and 3 · 4 · 3 with 1, which
makes 135 in total. Then we take these 135 data sets and make another 135
by adding microshifts.
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Figure 5: Spike shapes used for testing dependence of data parameters on perfor-
mance.

The algorithm was initialised with a set of spike shapes which was gen-
erated in the same way as the spike shapes in the data, but with fixed para-
meters such that the initial shapes are quite different from each other. Then
the algorithm was run until the stopping criterion was met.

The performance averaged over all 270 data sets is Pr = 0.48 ± 0.28
and Pp = 0.53 ± 0.29, where we introduce the convention: mean±standard
deviation. For an allowable shift of s = 1 the numbers are Pr = 0.65± 0.27
and Pp = 0.72± 0.27. Performance does not increase considerably for larger
values of s as figure 6 shows. In the following we will only report performance
with s = 1.

The average performance for the data without microshifts is [Pr, Pp] =
[0.67 ± 0.26, 0.74 ± 0.27] while it is [0.64 ± 0.28, 0.71 ± 0.27] for the data
with microshifts. So there is only a small effect of the additional spike shape
variability on the performance of our algorithm. There is also no big effect
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of changing the firing rate (24Hz: [0.66 ± 0.26, 0.74 ± 0.27], 30Hz: [0.67 ±
0.26, 0.74± 0.28], 39Hz: [0.67± 0.26, 0.73± 0.26]), but data sets with spikes
from shape set 1 in figure 5 are apparently easier to sort while those of set 3
are difficult (set 1: [0.76 ± 0.2, 0.87 ± 0.19], set 2: [0.75 ± 0.22, 0.78 ± 0.22],
set 3: [0.49 ± 0.27, 0.55 ± 0.28]). It is surprising that shape set 2 has a
considerably larger performance than shape set 3, because on first sight set
2 seems to have shapes which are more similar. The only explanations that
we can think of at the moment are that this is either because of the low
amplitudes of the shapes in set 3, or it is because the narrow first peak is the
deciding factor which is more similar in set 3.

The number of cells has a considerable influence on performance. With
one cell the values are [0.87± 0.27, 0.92± 0.28] while with 4 cells the perfor-
mance is much worse [0.45±0.09, 0.53±0.11] (also see figure 7). Of course we
had hoped that the performance is somewhat stable for an increase of cells,
but this result is also expected, because the spike sorting problem becomes
increasingly difficult with increasing number of cells. Especially, it becomes
more and more difficult to differentiate between spike shapes when they are
as similar as, for example, in shape sets 2 and 3 of figure 5.

3.4.1 Spike Shapes and Initial Spike Shapes

We wanted to know whether performance depends on the properties of the
spike shapes in the data. To test this we made a single spike train and
produced several data sets based on it by convolving the spike train with
different shapes. The shapes are much simpler than in the study above and
consist of a positive phase of a sine and a negative phase of a sine. The width
of the first phase varies from narrow to wide as depicted in figure 8 in 9 steps
and thereby also determines the width of the second phase. Additionally,
we independently varied the amplitude of the second phase in 5 steps. With
a medium setting of the width (31 samples) and amplitude (1) we get a
complete sine waveform.

We ran the algorithm on all 45 data sets with the same initial shape as for
the test data above. Similar shapes like this are shown in figure 5, compared
to shapes in the data, however, it has a very small amplitude (see figure 8).

The results are shown in figure 9. In all cases the recall is equal or close
to 1. So usually (nearly) all spikes are found. Precision, on the other hand,
is highly dependent on the width of the first phase. With increasing width
precision decreases dramatically. Because recall stays high, this means that
the algorithm finds more spikes than there are in the data.

The shapes with narrow positive and wide negative phase are most similar
to the initial shape. In these cases the algorithm recovers the shapes in the
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Figure 6: Average performance on generated test data dependent on allowable
shift s. Errorbars indicate standard deviation. Increasing s above 1 has no effect
for this data set.
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of cells. Errorbars indicate standard deviation. Increasing the number of cells
increases the difficulty of spike sorting and decreases performance.
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data very well, but with increasing width the algorithm never finds the right
shape and converges to one which has a low overall amplitude. When shapes
have low amplitudes, several spike times have to be set to 1 to fit the spike in
the data which results in a low precision. By using an initial shape which is
more similar to the ones in the data, the very good performance for narrow
positive phases can be reproduced independent of the widths and amplitudes
of the phases in the data. We conclude that not the properties of the spike
shapes themselves are very imported, but good initialisation is.

3.5 Comparison of Algorithms

The performances of section 3.4 are not as good as expected, but how do
performances compare between our algorithms and others in an equal setting?

We have presented three variations of one EM-based algorithm. They
differ in the E-step which can be a genuine variational approximation (short:
variational, section 2.2.1), a variational approximation assuming a determin-
istic posterior distribution (short: non-convex, section 2.2.2) and a convex
optimisation based on the latter (short: convex, section 2.2.3). The convex
optimisation is enhanced by thresholding. What happens without threshold-
ing? Then the optimisation results, rc

t , are free to take on values anywhere
between 0 and 1 and those are then taken to estimate spike shapes. Having
continuous rc

t adds a lot more degrees of freedom to our algorithm and these
are used to fit the noise completely. The result of the run from the left panel
of figure 1 for one exemplary spike is shown in figure 10. The shapes are
random spikes used to fit the noise by an intricate setting of spike times.
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Figure 10: Convex E-step without thresholding fits the noise. left: data in blue
and fit in green, middle: spike times, right: spike shapes, the data is from Quiroga
shape set 3 with noise level σ = 0.2, the original spike shapes are shown in figure
4 panel 3

We also have implemented a simple matched filter algorithm for the E-
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step. It calculates the similarity between the data and each spike shape
as

gc
tr =

Tw∑
i=0

wc
i

‖wc‖
vtr+i

This is very similar to equation 38 in the reformulation of the quadratic
problem (section 2.3). G then is normalised such that the maximum is at
1 and we select the maximum of each column in each row and put it into
f so that ft = maxc(g

c
t ). We then find regions of interest in f by using

the algorithm defined in 2.4 with σ = 3/40 and Tw = 20 samples. Within
each region of interest we find the maximum in G and note its time and cell
identity to set a corresponding spike time to 1. The ability of this algorithm
to handle overlaps is limited by Tw. The smaller Tw, the more overlaps can be
handled, but a smaller Tw also means that the matched filter is less tolerant
to different spike shapes and may produce more false positives. Hence, other
settings of the parameters might be better, but we did not have the time to
explore them.

To compare these four E-steps we run the algorithm on the data sets of
Quiroga et al. (2004) introduced in section 3.2.2. The result can be seen
in figure 11. Note that the performances that we report here are with an
allowable shift of s = 2, because this gave a bit better results. Variational
and non-convex E-steps produce very similar but bad results. They have
low recall (0.49± 0.16 and 0.48± 0.14, averaged over all data sets and noise
levels), but much worse precision (0.16±0.08 and 0.15±0.08). The situation is
similar to that of section 3.4.1 and points to problems with local minima. The
matched filter is surprisingly good, but has more problems with very similar
spike shapes like in shape sets 3 and 4 and achieves an average performance
of [0.48± 0.3, 0.49± 0.36]. The convex E-step gives best results with [0.62±
0.26, 0.63± 0.21] which means that on average it gets about 2 out of 3 spikes
right, but it can be seen in the figure that the algorithm is better than this
with less noise and worse with more noise.

All in all, the performances are not very good, but how do they relate to
clustering algorithms? In figure 12 we compare performances of our algorithm
with convex E-step to two freely available clustering algorithms: KlustaKwik
(Harris et al., 2000) and Wave Clus (Quiroga et al., 2004). It has to be ac-
knowledged that clustering algorithms alone can not handle the task that we
are solving. Their performance considerably depends on the spike detection
that has to be done in a first step. We are using the spike detection that
comes with Wave Clus and thus the performance must be seen in the con-
text of the combination of that spike detection and clustering. Additionally,
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clustering depends on the features that it is given. Instead of the original
waveforms we give both clustering algorithms only the first three principal
component scores. Note that Quiroga et al. (2004) report better perfor-
mance with wavelet features, but these are not available to us. KlustaKwik
fits a mixture of Gaussians and Wave Clus implements superparamagnetic
clustering.
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Figure 12: Comparison with clustering methods: convex problem with threshold-
ing, KlustaKwik, Quiroga’s Wave Clus. The noise levels correspond to σ = 0.05,
σ = 0.1, σ = 0.15 and σ = 0.2.

The average performance for KlustaKwik is [0.46± 0.18, 0.55± 0.19], for
Wave Clus it is [0.60± 0.27, 0.74± 0.27] and for convex with thresholding it
is [0.62± 0.26, 0.63± 0.21]. Wave Clus often has better recall and especially
better precision than our algorithm, but it is not better in all cases.
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3.5.1 Overlapping Spikes

Our algorithm is specially designed to cope with overlapping spikes, but does
it do so? We calculate performance for spikes which occur at most 1.5ms
apart7. The result is depicted in figure 13. For our algorithm with convex
E-step the graphs barely change. This is also reflected in the average perfor-
mance [0.63± 0.25, 0.64± 0.20] which is approximately equal to the perfor-
mance on all spikes. Therefore, the algorithm recognises overlapping spikes as
well as single spikes. The main effect for KlustaKwik [0.23±0.07, 0.50±0.16],
Wave Clus [0.19±0.08, 0.66±0.24] and matched filter [0.32±0.19, 0.55±0.34]
is a drop in recall which was expected.

3.5.2 Initialisation with Clustering Result

Because clustering is quite good in extracting shapes from non-overlapping
spikes in the data and is bad in telling overlapping spikes apart and our
algorithm sometimes has a problem extracting the right shapes, it is an
obvious idea to combine the two algorithms. We present results of such an
experiment in figure 14. In the experiment we seeded our algorithm in the
different variations with the result found by Wave Clus. The results are again
mixed. Although there is often a considerable improvement compared to the
Wave Clus performance, the performance on data sets with shape set 3 is
actually degraded.

On the other hand it is very interesting that now the variational E-step
is best with an average improvement in performance of [0.17± 0.18,−0.06±
0.22], followed by the convex with subsequent non-convex E-step [0.12 ±
0.20,−0.05 ± 0.19]. Apparently, initialisation with a good estimate of spike
shapes and times helps these algorithms to overcome local optima and to pro-
duce reasonable results. Finally even the matched filter [0.08±0.16,−0.03±
0.27] is better than the algorithm which worked best when not seeded: convex
with thresholding [0.01± 0.19,−0.05± 0.22].

There are other methods, however, that can handle overlapping spikes
when given a good estimate of the single spike shapes (e.g. Lewicki, 1994)
and it is unclear whether our algorithm is better than that.

4 Conclusion

We have presented a generative, probabilistic model for extracellular record-
ings of neurons. The model naturally handles overlapping spikes and it allows

7The algorithm result is the same as before, but we are restricting the analysis to
overlapping spikes only.
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σ = 0.15 and σ = 0.2.
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Initialised with Wave_Clus Result
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variational convex + non−convex convex + threshold matched filter

Figure 14: Using the result from Wave Clus as initialisation. The difference in
performance to the Wave Clus result is shown for variational, convex with subse-
quent non-convex, convex with threshold and matched filter E-steps. Everything
above 0 is an improvement, everything below degradation. The solid and dashed
grey lines show the maximally possible improvement for precision and recall. Noise
levels: σ = 0.05, σ = 0.1, σ = 0.15 and σ = 0.2.
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us to learn spike times and spike shapes at the same time. The learning in
the model is done with the expectation-maximisation algorithm, but to cope
with computational difficulties we propose three approximate E-steps. While
the variational approximation still is very close to the original EM algorithm
(in our terms), it is hard to interpret the variables involved in our third ap-
proximation directly in terms of the expected values that we need for EM.
This third approximation, however, involves a convex quadratic program (we
denote it convex E-step) and therefore allows us to find a global optimum of
our problem. This is a large advantage over the other two approximations
which can only find local optima, because we have seen that the posterior
distribution defines an optimisation space which is flat apart from very few
single peaks.

Using the convex E-step alone for a couple of EM iterations leads to
overfitting, because it allows that spike shapes are scaled to fit the data.
This introduces a lot of additional degrees of freedom which are used to
fit the noise. To counteract this effect we reduce the number of degrees of
freedom by not allowing the scaling of spike shapes which is implemented
with thresholding. The other approximations do that automatically, but
often converge to the wrong optima as our results show.

None of the proposed algorithms, however, exhibits really good perfor-
mance. An average performance of around 0.6 (convex E-step with threshold)
for recall and precision on a data set which is very similar to real recordings
is not very usable. This would for example mean that only a bit less than 2
out of 3 spikes are assigned to the correct cell while the random baseline is
at 1/3. We have noticed two particular things that often lead to lower per-
formance. First, recovered spike shapes are similar to the original ones, but
have lower amplitudes such that the algorithm puts two, or more, of them
right next to each other. Second, the algorithm recovers a shape which is
actually the mean of two spike shapes and assigns spikes of both to the mean
shape. The first problem might be solved by introducing a refractory period,
but we have argued that we loose the convexity of our quadratic program
when we do this which in turn leads to worse results. The second problem
has no obvious solution except maybe for using different initial spike shapes.

Clustering algorithms do not perform a lot better, but they also can not
really be compared to our algorithm, because they solve a slightly different
problem. The matched filter can be compared to what we have done and it
produces sometimes even better results than our more complicated E-steps.
The good news, however, is that our results show that the convex E-step with
thresholding automatically handles overlapping spikes which was the aim of
the project in the first place.

There are several issues that we have not addressed. Most importantly,
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the number of cells is a fixed, predetermined value in our algorithm, but in
a real recording the number of cells in unknown. This issue could be over-
come by using a cascade of runs with increasing number of cells and selecting
the one which solution has the largest likelihood, but such an approach only
works provided that the algorithm finds a good solution with every num-
ber of cells and this is not the case. Other extensions that could be made
relatively easy are the change of the noise model from uncorrelated to cor-
related Gaussian and the inclusion of multiple recorded waveforms when the
electrode had more than one wire (e.g. a tetrode).

Another disadvantage of the proposed E-steps is their assumption of a
posterior distribution that is fully factorised. This assumption is equivalent
to assuming that having a spike at a certain point in time given the data
is independent of having a spike right next to it given the data, what is
clearly not the case. We could, for example, try to recast our model as an
hidden Markov model and include correlations between spike times into the
dynamics. Then the Viterbi algorithm could be used to infer spike times in
that model. In such a model it is also easier to introduce additional variability
of the spike shape which is not included in our model. However, it is unclear
whether this approach would scale well with increasing number of spike times
considered in terms of computational expense.

The proposed algorithm is doing what it is supposed to do, but it does
so not very well. It is unclear whether the exhibited performances are suf-
ficient to give an experimenter a good view on the real situation behind an
extracellular recording. Although this might be true in some cases, in others
it surely is not.
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A Matrices with All Zeros in the Diagonal

are Non-Convex

A square matrix, Hm×m, which is convex only has eigenvalues which are
equal or greater than zero.

λi ≥ 0 i = 1, . . . ,m

The trace of a matrix is the sum of the values in its diagonal and the trace
is equal to the sum of the matrix’ eigenvalues.

tr(H) =
m∑

i=1

hi,i =
m∑

i=1

λi

Only the zero-matrix with h0
i,j = 0, i, j = 1, . . . ,m has all zero eigenvalues,

λi = 0 for all i, because the product of the zero-matrix with any other matrix
is equal to the zero-matrix, H0M = H0 and hence any eigendecomposition
with all zero eigenvalues is equal to the zero-matrix

VH0V> = H0

If H is a matrix with all zeros in the diagonal and non-zero entries off diag-
onal, then

tr(H) = 0 =
m∑

i=1

λi.

Consequently, as H 6= H0, H must have at least one negative eigenvalue.
Therefore H is not convex.
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