
Quantitative comparison of stable representations of
natural stereo-images and binocular complex cells

Bachelor’s Thesis

Sebastian Bitzer (sbitzer@uos.de)
Cognitive Science Program
University of Osnabrück

Supervised by
Professor Peter König

November 27, 2004

Abstract

Complex cells in primary visual cortex exhibit particular spatial
properties such as tuning for stimulus orientation and spatial frequency
independent of precise stimulus position in the receptive field. Recently
it has been shown that these neurons share important such properties
with simulated cells, which were adapted to exhibit optimally stable
activity to natural visual stimuli. Consequently, it has been suggested
that complex cells can be described as forming optimally stable repre-
sentations of their natural input.

The simulation from this study has now been extended into the 3D
domain by optimising activities of simulated cells to binocular cat-cam
video sequences of natural scenes and in the work at hand I compare
properties of the resulting stable cells to those of complex cells in order
to evaluate whether a similar conclusion as from the simulation with
monocular stimuli can be drawn. Thereto I directly analyse subunit
receptive fields, examine binocular interaction profiles and investigate
responses to random-dot stereograms while mainly contrasting my find-
ings to physiological results obtained by the groups of Ralph Freeman
and Andrew Parker.

Similar to the monocular study I find that simulated and real binoc-
ular neurons have many properties in common. Stable cells again ex-
hibit tuning for orientation and spatial frequency as well as position
invariance. Furthermore, all of the simulated cells are disparity selec-
tive and their disparity tuning curves show characteristics comparable
to those of striatal neurons. Moreover, a predominance of phase en-
coding can also be observed in both systems.

Nevertheless, I notice several differences between stable and com-
plex cells. Many of them are due to the limitations of the cell model
employed in the simulation, which for example does not allow consis-
tent inhibitory input from one eye like it is found in some real neurons.
One crucial discrepancy, which I cannot explain, is a greater number of
stable cells preferring large phase disparities near ±π. I propose that
this may result from properties of the used natural stimuli.

In conclusion, I find striking similarities between stable and com-
plex cells signifying that binocular complex cells can be described as
forming optimally stable representations of natural visual input as well.
However, the cell model should be adapted to incorporate recent ad-
vances in the modelling of striatal neurons and further investigations
need to be done to explain open discrepancies concerning phase dis-
parity.

Contents

1 Introduction 2
1.1 Binocular complex cells in primary visual cortex 2
1.2 Optimally stable representations of natural visual stimuli . . 5

2 Methods 9
2.1 Fitting 1D and 2D-Gabor functions 9

2.1.1 Gabor functions . 9
2.1.2 Nonlinear least squares and Levenberg-Marquardt . . 10
2.1.3 Finding good starting values 11
2.1.4 Goodness of fit . 12

2.2 Testing RFs with random dot stereograms 13
2.2.1 Generating RDS . 14
2.2.2 Activities to RDS . 16

2.3 Disparities from SVD components of interaction profiles . . . 17
2.3.1 Binocular interaction profiles 17
2.3.2 Calculating disparities from SVD components 18

3 Evaluation of simulation results 21
3.1 Subunit RFs and simple cells 21

3.1.1 Basic properties . 21
3.1.2 Binocular properties 25

3.2 Comparison to complex cell data from Anzai et al. 27
3.2.1 SVD components as subunits 27
3.2.2 Disparity encoding in component interaction profiles . 28

3.3 Comparison to RDS data from Prince et al. 34
3.3.1 Activities to RDS and disparity sensitivity 35
3.3.2 Tuning types described by position and phase 38

4 Discussion 46
4.1 Differences attributable to the binocular energy model 47
4.2 Other discrepancies . 48

A Source code 55

1

1 Introduction

Cognition is one of the most amazing phenomena in biology. In the neuro-
sciences we assume that cognitive functions such as seeing are implemented
by the neural circuitry in the brain. This leads to the questions how this
circuitry is formed and how single neurons contribute to it.

Due to the limited amount of information, which can be encoded in the
genome of an organism, the details of neural organisation have to be learnt
from the environment. Therefore in order to understand the circuitry in the
brain it is important to know the relation between neurons and their natural
stimuli. Accordingly, it has been shown that certain neuronal activities
can be described as forming representations of natural stimuli which are
optimally sparse (Olshausen and Field, 1996) or optimally stable (Körding
et al., 2004).

Here I quantitatively analyse whether activities of complex cells in pri-
mary visual cortex (V1) to binocular stimuli can be described as forming
optimally stable representations of these stimuli, too. Thereto, I compare
properties of optimally stable cells obtained from a simulation to those of
striatal cells on three different levels of analysis. I begin with a direct analy-
sis of complex cell constituents, which are then reinvestigated indirectly via
response properties of the cells and finally I examine activities of cells to
binocular stimuli themselves.

The following two subsections introduce the topic of binocular cells in
V1 and the simulation, which has been used to produce optimally stable
representations of natural stimuli. In further sections I present my analysis
and discuss these results.

1.1 Binocular complex cells in primary visual cortex

The studies mentioned in the following text have been done with cats or
primates. I am interested in the more abstract properties of neuronal acti-
vation and assume that these are comparable in the early stage of cortical
processing which I am looking at in the two species. This this goes along
with my central hypothesis that neuronal activities are adapted to natural
stimulus statistics, which should be roughly equal for these two species, too.

Already Hubel and Wiesel (1962) showed in their fundamental work
that cells in V1 can be classified into two distinct categories according to
their firing properties to bar or grating stimuli. Whereas so-called simple
cells selectively respond to bars of a certain orientation, spatial frequency,
velocity and contrast polarity at a certain position in their receptive field

2

(RF), so-called complex cells are invariant to local contrast and stimulus
position while still maintaining specificity to spatial frequency, orientation
and velocity.

Additionally, large subsets of both classes of cells are selective to binoc-
ular disparity, which is possible, because V1 is the first stage in the visual
pathway where neurons receive significant input from left and right eye.
Binocular disparity describes small differences between images of stimuli on
the two retinae which result from the horizontal separation of the two eyes.
Projections of stimuli outside of the fixation point will not fall on corre-
sponding points of the retinae when the stimuli lie in different depth. These
deviations from corresponding points are defined as disparity. Here I follow
the common convention that far stimuli have positive disparity and near
stimuli have negative disparity (see figure 1 for illustration).

Binocular simple cells can often be modelled as a linear binocular filter
followed by a static nonlinearity (Anzai et al., 1999b; Chalupa and Werner,
2003; Freeman and Ohzawa, 1990). This means that it is possible to eas-
ily predict the response of a simple cell to binocular stimuli from the re-
sponses to monocular stimuli. However, this is not true for complex cells
which exhibit substantial nonlinearities in their responses to binocular stim-
uli (DeAngelis and Anzai, 2003). Accordingly, binocular interaction profiles
which describe the activity of cells to bars presented independently to the
two eyes1, show elongated regions along lines of constant disparity (Ohzawa
et al., 1990, 1997; Anzai et al., 1999c), that is, these cells are activated for
stimuli at all positions in their receptive field as long as the disparity is
appropriate.

Hubel and Wiesel (1962) proposed a hierarchical model in which sev-
eral simple cells with different optimal stimulus positions and else equal RF
properties feed into one complex cell and thereby make it position invari-
ant. But it has long been noted that it need not be actual simple cells,
which constitute the input to complex cells in order to produce the reported
nonlinearities.2 Thus Ohzawa et al. (1990, 1997) suggest a more abstract
hierarchical model in which the outputs of functional subunits are com-
bined to produce the activity of a complex cell. This so-called binocular
energy model consists of four binocular subunits with simple cell-like recep-
tive fields. Each subunit is modelled as a linear binocular filter followed by
a half-squaring nonlinearity. The first and second and the third and fourth

1for further explanations and examples see section 3.2
2see Mechler and Ringach (2002) for a criticism of classification into simple and complex

cells in general

3

Figure 1: Schematic depiction of the geometry of horizontal binocular disparity;
Images of fixation point F fall on corresponding points of the retinae. The differ-
ence between corresponding point and actual point of a stimulus projection onto
one retina is defined as disparity. Thus in the fixation point there is zero dispar-
ity, stimuli behind the fixation point (far) are defined to have positive disparity
and stimuli in front of the fixation point (near) have negative disparity. Near and
far stimuli can be simulated by shifting left and right stimulus presentations on a
frontoparallel plane (2D) instead of shifting in depth (3D). Far stimuli are some-
times said to produce uncrossed disparities and near stimuli to produce crossed
disparities, because for near stimuli these left and right shifts have to cross each
other. Vieth-Müller circle: theoretical circle consisting of all points whose images
fall on corresponding points of both retinae; figure adapted from Gonzalez and
Perez (1998)

4

subunits can be seen as units themselves. The subunit RFs within each of
the two units are sign-inverted versions of each other while RFs across units
stand in quadrature phase relationship which means that the phases of the
underlying Gabor functions3 are 90◦ apart. Thereby the sign-inversion leads
to contrast invariance while the quadrature relationship results in position
invariance. Left and right RFs of subunits have equal preferences for ori-
entation and spatial frequency and differ only in properties responsible for
disparity tuning of the cell. This is in good agreement with physiological
findings (Hubel and Wiesel, 1962; Ohzawa et al., 1996).

For simulations the four-subunit model can be substituted with an equiv-
alent two-subunit model in which every unit consists of only one subunit,
which does full-squaring instead of half-squaring. An example of such a
binocular energy model is depicted in figure 2A.

Two possible mechanisms for encoding disparity have been identified
(Ohzawa et al., 1996, 1997; Anzai et al., 1999a) and are demonstrated in
figure 2B. The position model assumes that the structure of left and right
RFs is the same, but that the position of the two RFs is different and this
difference then defines the preferred disparity of the cell. The phase model,
on the other hand, assumes that the positions of the RFs are equal, but that
RF structures differ in the two eyes by a given phase shift which in turn also
defines optimal disparity. Evidence for both mechanisms has been found in
physiological studies (Anzai et al., 1999a,c) and indeed the response of some
cells can only be explained by a combination of both mechanisms (Prince
et al., 2002a).

In my analysis I will present some of the studies mentioned here, espe-
cially Anzai et al. (1999c) and Prince et al. (2002a), in more detail in order
to compare their findings with data obtained from our simulation.

1.2 Optimally stable representations of natural visual stimuli

Körding et al. (2004) report that optimally stable representations of natural
visual stimuli resemble many properties of complex cells very well. These
properties include spatial frequency and orientation tuning and invariance
to stimulus translation and contrast polarity. Selim Onat extended their
framework to incorporate binocular stimuli and I assess his results about
whether optimally stable representations can describe binocular properties
of cells in V1, too. Details of the following brief description of the simulation
can be read in Onat et al..

3for specification of Gabor functions see section 2.1.1

5

Figure 2: Energy model and disparity encoding. A Adapted binocular energy
model used in our simulation. The model consists of two subunits which are binoc-
ular linear filters followed by a static nonlinearity (full-squaring). The output of
the complex cell is a linear combination of subunit outputs followed by a square
root. For the energy model to act as a complex cell Ohzawa et al. (1990, 1997)
proposed that the subunit RFs stand in quadrature phase relationship as depicted
here. Further left and right RFs should be equal except for properties defining se-
lectivity for disparity. B Mechanisms of encoding disparity. Exemplary 1D profiles
of RFs taken along a line orthogonal to orientation are shown. In position model
left and right profiles are equal but at different positions. In phase model left and
right profiles are at corresponding positions, but have different shapes (profiles with
phase shift). figure B adapted from Ohzawa et al. (1997)

Natural visual stimuli have been obtained by recording image sequences
from two cameras which were mounted in parallel on the head of a freely
moving cat. This has yielded a pair of left and right natural images for
each frame of the video whereby the two images differ a little bit due to
the spatial separation of the two cameras (4.8cm). Because the theoretical
fixation point of the two cameras lies in infinity, only near disparities should
have been sampled, but a normalisation technique has been used to obtain
all kinds of disparities. Always four 20x20 pixel (px) sized patches have been
extracted from a randomly chosen position within the raw images (left and
right patch of frame t and left and right patch of frame t + 1, see figure 3).
For computational efficiency reasons these patches have not been the input
for the simulation, but their representations in the space of their first 100

6

principal components4, which already explained > 95% of their variance.

Figure 3: Description of stimuli. A Setup of the cameras on a cats head. B
Example of a raw image recorded with one camera. Image is converted to greyscale
before further processing. C Schematic representation of choice of patches for one
stimulus configuration within optimisation. From left and right images of frame t
and t + 1 one patch is chosen from a randomly drawn common position.

The simulation is based on the cell model as depicted in figure 2A which
I already introduced above. Thus the activity of a simulated neuron is
calculated in the first step for the first subunit by taking the inner product
between left patch, I l, and left weights, W l

1, and right patch, Ir, and right
weights, W r

1 . Further steps are defined by

A =
√

(W l
1I

l + W r
1 Ir)2 + (W l

2I
l + W r

2 Ir)2. (1)

This definition of activation allows for many different response properties
depending on the weights W , which I will denominate RFs of the simulated
neurons in the following. As mentioned earlier Ohzawa et al. (1990) pro-
posed that the simulated cells are complex-like, if the RFs of the subunits
resemble two-dimensional Gabor functions which stand in quadrature phase
relationship. I will examine this property in section 3.1.

A given set of 100 cells should act optimally stable which means that
the activity of a cell should change as little as possible within one time
step. This objective is motivated by the fact that relevant features within
the visual field, like certain objects, do not change as rapidly as low-level
features like luminance in a limited region of the visual field. To obtain
stable representations of the stimuli the activity of the cells to the given
patches has been optimised with respect to an objective function. A cell,

4actually components 2-101: mean has been taken out

7

which does not react to any stimulus, would be most stable. Obviously this
is not wanted and to prevent this a term has been included in the stability
objective, which reinforces some variability in the overall responses of the
cell. Furthermore a decorrelation term has been utilised to penalise common
responses of the cells, what should lead to different response patterns for
each cell. Thus, in the simulation the following objective function has been
maximised

Ψ = −
N∑

i=1

〈(Ai(t)−Ai(t + ∆t))2〉
σii︸ ︷︷ ︸

Ψstable

− 1
(N − 1)2

∑
i6=j

σ2
ij︸ ︷︷ ︸

Ψdecorr

(2)

where N is the number of cells, 〈〉 denotes the average over stimuli and thus
over time, Ai(t) is activity of neuron i at time t and σij is the covariance
over stimuli between cells i and j.

Weights for each subunit of each simulated neuron have been obtained
as a result of the converged optimisation process, which optimally stable
represent (binocular) properties of the shown natural stimuli. In the fol-
lowing I have analysed these artificial RFs in several ways as explained in
the methods section (2) to attain quantitative descriptions of RF properties
comparable to physiological data.

8

2 Methods

Different physiological studies often employ different analyses while investi-
gating the same or very similar subjects. Thus, for comparison of our sim-
ulation data with a wide range of physiological data I had to apply several
different analysis techniques which are described in detail below. A basic
RF analysis has been done by fitting 2D-Gabor functions to the RFs of sub-
units. Further I estimated the disparity tuning properties of the simulated
neurons with random-dot stereograms (RDS) and fitting of the resulting tun-
ing curves with 1D-Gabor functions. At last I obtained binocular interaction
profiles of our cells, which I decomposed into components by a singular value
decomposition, whose properties I in turn analysed with 1D-Gabor fits. All
programming has been done in MATLAB R© (The MathWorks, Inc.).

2.1 Fitting 1D and 2D-Gabor functions to disparity tuning
curves and RFs, respectively

Curve fitting can be used to get insights in the given data by describing
the data with parameters of a certain model. My data are one dimensional
disparity tuning curves and two dimensional RFs and I want to express
these in terms of Gabor functions, which are nonlinear in their parameters.
Therefore, I use a nonlinear least squares method to fit the Gabors to my
data. Details of the fitting procedure can be found in the corresponding
sections below.

2.1.1 Gabor functions

Gabor functions are defined as the product of a Gaussian and a sinusoidal
component (Gabor, 1946). For 1D-Gabor functions I use the definition

G(x) = Ao + A · exp
(
−(x− x0)2

2W 2

)
· cos(2πf(x− x0) + φ), (3)

where Ao is the amplitude offset, A is the amplitude, x0 is the centre of the
Gaussian envelope, W is the width of the Gaussian, f is the frequency of
the sinusoid and φ describes its phase. In two dimensions another Gaussian
envelope is added. Thus, along with the definition of the centre in X- (x0)
and Y - (y0) coordinates, two width parameters are needed - one for the
minor axis (Wp) and one for the major axis (Wq). Further, parameters θ
and γ are used to determine the orientation of the sinusoid and the Gabor

9

envelopes, respectively. This yields for 2D-Gabor functions

G(x, y) = Ao + A · exp
(
−p2

2W 2
p

)
· exp

(
−q2

2W 2
q

)
· cos(2πfu + φ), (4)

with

p = (x− x0) cos γ + (y − y0) sin γ,

q = −(x− x0) sin γ + (y − y0) cos γ,

and

u = (x− x0) cos θ + (y − y0) sin θ.

These functions match the definitions as given in Anzai et al. (1999a) or
Prince et al. (2002b). Preliminary experiments have shown that allowing
γ to vary freely only marginally improves fits of RFs over fits in which γ
was set to equal θ. Therefore I simplify the 2D-Gabors by postulating that
γ = θ, which additionally has computational advantages. Correspondingly,
I will only write θ below.

For an example of 1D- and 2D-Gabor functions see figure 4. To gain
a better understanding of the influences of each parameter in 1D-Gabors
I have written a Matlab demo, which is a graphical interface allowing for
interactive manipulations of all parameters of a 1D-Gabor function.

2.1.2 Nonlinear least squares and Levenberg-Marquardt

In the nonlinear least squares method the difference between fitted curve
and data is minimised. This difference is defined by the χ2 function, which
depends on the values of the parameters p = (p1, . . . , pk)

χ2(p) =
N∑

i=1

(di − y(xi;p))2 ,

where N is the number of data points, di is the data value at point xi and y is
the value of the model with parameters p at this point. Usually the addends
of the χ2 function are weighted by the variance of the data points such that
poorly approximated points do not influence the fitting procedure as much
as confident points do. However I omit the weighting term, because the
implementation of the fitting algorithm mentioned below does not support
weights5, or variances of data points are not given (RF and SVD fits).

5this is a problem I did not solve, but first comparisons with fits of another program,
which supports weighting, revealed no crucial differences

10

x
0 X

y
0

Y

0

θ

A

x
0 X

A

A
o

0

W
p

B

1D gabor

gauss envelope

Figure 4: Gabor functions. A 2D-Gabor function. The function is the product of
two Gaussian envelopes and a sinusoidal component. The envelopes determine the
width of the function along and orthogonal to the orientation which is determined
by θ (here θ = −π/7). Centre lies at (x0, y0). B 1D-profile of the function shown in
A along the line orthogonal to the orientation. The result is a 1D-Gabor function
which is the product of the minor Gaussian envelope with the sinusoidal component.
Width of the Gaussian is determined by Wp and amplitude by A. A small amplitude
offset Ao has been introduced to illustrate that parameter. Phase in this example
is φ = π/2

I use the popular Levenberg-Marquardt method (Press et al., 1992) to
find a minimum of the χ2 function. This algorithm is implemented in the
MATLAB R© function lsqcurvefit, which also calculates values of the χ2

function itself. Thus the crucial work in fitting Gabors lies in properly
defining the function to fit and in finding good starting values for the opti-
misation.

According to whether I want to fit one dimensional or two dimensional
data I apply the Gabor definitions as given above.

2.1.3 Finding good starting values

Good starting values are essential for the optimisation to converge to a local
minimum. This becomes more important with more complex functions like
the 2D-Gabor or the square root 1D-Gabor. Therefore I developed heuristics
to estimate the values of critical parameters before optimisation. Phase,
position and width of the Gabor functions turned out to be noncritical
in most cases, that is, even with poor estimators of these parameters the

11

optimisation tends to converge as long as the other estimates are good.
In the 1D case I determine the frequency of the underlying Gabor-

function with a discrete Fourier transform of the data by setting this fre-
quency to the one with the most power in the resulting power spectrum. This
estimate is so good that further optimisation of frequency is not needed.
Consequently I fix this parameter to the estimated value during optimi-
sation. In addition this procedure prevents that changes in the Gaussian
component are cancelled by a change in frequency (see Prince et al., 2002b,
for an example). The heuristic for the amplitude of the 1D-Gabor depends
most importantly on the standard deviation of the data and the heuristic
for the amplitude offset on the mean, or, in combination with tuning curves,
on the values of the first and last data points, because these points estimate
the activity to uncorrelated stimuli in the two eyes, which should be the
baseline of the tuning curve.

When finding starting values for 2D-Gabor functions I rely on scripts
which have been written before for estimating the centre of the 2D data
(receptive fields) and the frequency. Again the frequency is fixed to a value
determined with fast Fourier transformation. Additionally I fix the ampli-
tude offset to 0 during optimisation, which is the mean value of the RFs.
The amplitude is estimated by the maximum value of the data and orienta-
tion is found by correlating differently oriented, sinusoidal gratings with the
RFs. The orientation, whose grating correlates best with the RF, is taken
as an estimator.

In the case of binocular data I use the optimal parameters found for the
left data as starting values for the right data. This ensures that both fits
obtain comparable parameters.

2.1.4 Goodness of fit

I have three criteria, which together specify goodness of a fit. First, the
optimisation must converge to a solution. Second, I calculate the R2 value of
the fit. And third, I determine confidence intervals for the fitted parameters.

Most of the time optimisation finds a minimum of the χ2 function with
starting values as described above. If this is not the case, I refit the data with
starting values, which are carefully chosen by hand. Thus all fits reported
here are the result of a converged optimisation process.

The R2 value gives an estimate for how much of the data variance is
explained by the fit. Here I use a degree of freedom adjusted definition of
R2 in which the sum of squared errors (SSE) of the fit is related to the sum
of squares around the mean (SST) of the data. If the SSE is small compared

12

to the SST, then the fit is considered good and hence explains lots of the
variance of the data. The following definition gives 1, if 100% of the variance
is explained

R2 = 1− (n− 1)SSE
(n−m)SST

= 1−
(n− 1)

∑n
i=1 wi(di − yi)2

(n−m)
∑n

i=1 wi(di − d̄)2
,

where n is the number of data points, m is the number of fitted parameters,
wi = 1/σ2

i weights each addend with the variance of the data point, di is
the data value, d̄ is the mean over all data points and yi is the value of the
fitted curve.

Confidence intervals for the fitted parameters are estimated as given in
Press et al. (1992). For this I evaluate how the first partial derivatives
of the fitted function with respect to different parameters interact over all
data points, what leads to the covariance matrix of the fitted parameters. I
then extract standard errors for the parameters from there and determine
95% confidence intervals as the region of two standard errors around the
parameter value. Unfortunately, these confidence intervals are quite large
in comparison to the fitted values. For example, the maximum of the abso-
lute value of fitted positions over all 100 (1D) tuning curves is 4.8 whereas
the minimum of 2·standard error is 6.2. This makes clear that almost all
fitted positions lie within every single confidence interval and renders these
intervals seemingly useless. To overcome this flaw I included second partial
derivatives in my calculations, which should have increased the accuracy
of the estimated confidence intervals. Although this increases the range of
observed interval sizes (minimum is now circa 0.8), many confidence inter-
vals remain large (median 7.3). So, for all fits, except those where a 1D
Gabor function with fixed frequency is fitted, I only consider first partial
derivatives, because the gain of second partial derivatives does not match
the increase in complexity. Nevertheless, the size of the confidence intervals
still gives a good qualitative description of the accuracy of the estimated pa-
rameter values, which means that a fit with comparably large confidence in-
tervals often also has questionable parameter values. This applies especially
to tuning curves with very low frequency for which it is hard to determine
the correct position (see figure 5C for an example).

2.2 Testing RFs with random dot stereograms

Prince et al. (2002a,b); Read and Cumming (2003) and Cumming (2002) use
random-dot stereograms (RDS) to test neurons in V1 for disparity tuning.
In order to compare my artificial cells with their findings I do the same.

13

Random-dot stereograms consist of bright and dark dots at random po-
sitions on a grey background. So they allow testing for disparity tuning
independent of orientation, spatial frequency or exact position of the stim-
ulus, because they contain complete spectra of these parameters and are
correspondingly called broadband stimuli.

2.2.1 Generating RDS

To produce RDS I first generate one large random-dot stimulus, which con-
tains an equal number of white (value = 1) and black (value = −1) dots
placed at randomly drawn positions. All other parts of the stimulus get a
value of 0. In my computations I use the smallest possible dot sizes of 1
pixel, but dot sizes may take larger values as long as these are expressed in
multiples of one pixel. Thereby it is possible that one dot covers another
dot partially or fully. The actual number of generated dots is controlled by
a given dot density, which expresses in % how much of the RDS should be
covered with dots. For different comparisons with reported data I use either
a dot density of 25% or 50%, but results of both are very similar. The final
step in producing a random-dot stimulus is then the subtraction of the mean
from all values such that the mean of the stimulus is 0.6

From the large random-dot stimulus I extract the RDS according to
a given disparity. Thereto I define one region of the large stimulus as a
reference (right) and get the other region (left) by moving some value, which
is determined by the given disparity, away from the reference. As long as
these regions have some overlap they represent some disparity, otherwise
they are uncorrelated.

I use two forms of disparity. In the horizontal disparity condition I move
the left region only on the X-axis. This is depicted for one RDS in figure
5B. There a RDS with -3 pixel disparity is shown, which represents a near
stimulus. Alternatively one can define disparity orthogonal to the RF orien-
tation of the cell. In this case I shift the left region along a line orthogonal to
this orientation instead only along the abscissa. I define orthogonal dispar-
ity such that if the orthogonal line is horizontal, then a negative disparity
would result in a left shift of the left region and therefore would represent a
near stimulus, exactly as it is the case in the horizontal condition.

6this is only needed in the case that, e.g. through covering, more bright or dark dots
exist

14

A

subunit 1 subunit 2

L R L R

ce
ll:

78

B

L R −20 −10 0 10 20

1600

1800

2000

2200

C

disparity (px)

m
ea

n
ac

tiv
ity

Figure 5: Activity of cell 78 to random-dot stereograms (RDS) with different
disparities A RFs of cell 78 with orientation slightly less than π/2 (orientation
defined as shown in fig. 4A). B Example of one RDS with 25% dot density and
horizontal disparity of size -3 (pixels), which corresponds to a crossed disparity
(near) and a shift of the left stimulus 3 pixels to the left with respect to the right
stimulus. A disparity orthogonal to the RF orientation would mean that the left
random-dot stimulus would be shifted 3 pixels up in this case. C Mean activities
to RDS with different horizontal disparities fitted with a 1D-Gabor function. Error
bars depict estimated 95% confidence intervals for the plotted means, red data
point shows activity to RDS with disparity as shown in B. Although RF frequency
is high, frequency of the tuning curve is very low. This makes it hard to determine
the position (dotted line) of the fitted Gabor with high confidence (95% confidence
interval for position = 3.12± 63.11 px, R2 = 0.97).

15

2.2.2 Activities to RDS

I ”show” these generated RDS, which are of the same size as the RFs (20x20
pixel one eye), to the simulated cells in order to estimate their disparity
tuning curves. These tuning curves describe the activity of a cell to certain
disparities, while the activity of a cell to a stimulus is defined as in equation 1
and figure 2A. Thereby the probabilistic nature of RDS forces one to average
the activities to sufficiently many RDS with the same disparity in order to
obtain a meaningful estimate for disparity tuning. In my case 1000 different
RDS suffice to get useful data points which can be fitted with a 1D-Gabor
function7. Data points of one such tuning curve are mean activities to RDS
in all disparities possible with resolution of one pixel, that is disparities
−20,−19, . . . , 0, . . . , 20 where −20 and 20 already represent uncorrelated
stimuli, because left and right stimulus have no overlap. Additionally, I
estimate monocular activities to random-dot stimuli by showing a blank
stimulus (all values equal) to one of the eyes and a random-dot stimulus to
the other. Hereby the activity to a blank stimulus is always zero.

It is known that the variance of cell activities rises approximately propor-
tional with its mean. Prince et al. (2002b) propose to take the square root
of all computed activities before further processing to normalise variances,
but this transform is not appropriate in my case (see 3.3.1). Thus I di-
rectly weight data points with their variance in the calculation of statistical
measures, which assume equal variances.

To evaluate the tuning for disparity of the artificial cells I use the dis-
parity discrimination index (DDI) (Prince et al., 2002b). This measure
takes into account the amplitude of disparity tuning and additionally the
variance of the tuning curve in order to describe how good a cell can discrim-
inate between its preferred disparities. Therefore it can be defined in terms
of maximum mean activity of the cell (amax) and corresponding minimum
(amin) as follows

DDI =
amax − amin

amax − amin + 2 · RMS
(5)

The root mean squared error (RMS) is the square root of the summed vari-
ances around the data points across the tuning curve

RMS =

√
SSE
r − d

=

√∑20
i=−20

∑r
j=1(aij − āi)2

r − d

7Most means are 14-16 times larger than their 95% confidence intervals (figure 5C).
The relation between confidence interval of the means, c, and number of presented RDS,
r, is quadratic: c/n → r · n2

16

where r is the number of different RDS used with each disparity (250), d
is the number of different disparities (41), aij is activity to RDS j with
disparity i and āi is the mean activity to RDS with disparity i. Prince et al.
(2002b) performed all of these calculations on the square root of activities,
that is, on more or less normalised variances. A corresponding operation
on my data would be to weight the addends of the SSE with the variance
of āi, but this eliminates the influence of all variances on the DDI nearly
completely, what contradicts the idea of the DDI. Thus the SSE remains
unweighted.

Monocular activities (aL, aR) are used to compute the ocular dominance
index

ODI =
aL

aL + aR
(6)

where in physiology monocular activities are taken relative to the recording
site, that means instead of left and right one would take ipsilateral and
contralateral eye. Cells with ODI near 0.5 are well balanced between left
and right eye and hence are said to be binocular.

2.3 Obtaining disparities from SVD components of binocular
interaction profiles of RFs

It is not possible to directly measure the activity of subunits underlying the
response of complex cells. To get an approximation of the characteristics
of the subunits anyway, Anzai et al. (1999c) calculated SVD (singular value
decomposition) components of binocular interaction profiles and argued that
these resemble well binocular interaction profiles of hypothetical subunits.
For a direct comparison of their data with mine I retrace their calculations
with my cells.

2.3.1 Binocular interaction profiles

Anzai et al. (1999c) measure binocular interaction RFs with spatiotempo-
ral white noise generated according to binary m-sequences. The resulting
profiles can be interpreted as the mean response of a cell to two bars with
optimal spatial frequency and orientation, which are presented in different
positions to each eye (in each eye one bar). They further define the interac-
tion profile to be the difference of responses to bars with equal contrast in
both eyes (match) and responses to bars with opposite contrast in the two
eyes (mismatch) (see also Ohzawa et al., 1997).

17

I can calculate corresponding interaction profiles directly from the 2D-
Gabor fits of the simulated RFs. Thereto I assume that a presented bar
has either value 1 (bright) or -1 (dark). Then the activity to a bar with
optimal orientation can be computed according to the cell model from the
projection of the two dimensional fit to a one dimensional line orthogonal
to the preferred orientation at the centre of the fit. Such a projection is
already illustrated in figure 4. The value of this 1D-profile at the position of
the hypothetical bar in the left eye and in the right eye corresponds here to
W lI l and W rIr, respectively, from equation 1 (definition of activity), which
is then further processed according to the cell model to yield the activity
of the cell to matching contrast bars at position XL in the left eye and
position XR in the right eye. Thereby these positions are defined relative to
the centre of the 2D-Gabor fit and XL = 0 means that the bar in the left
eye is presented in the centre of the RF. If the centre of a fit lies more than
2.2 pixel away from the centre of the patch8, then the centre of the patch
is chosen as reference instead, because otherwise no complete interaction
profile could be produced. The value 2.2 is selected such that this reset
of RF centres only happens to 2D-Gabor fits with very low frequencies for
which it is hard to determine the correct centre, anyway. In this way I
achieve a range of positions from -7.3 to 7.3 pixel. At the end of the process
I again get 2D-profiles, this time in the dimensions of positions of bars in
the RFs.

The only difference in the calculation of activity to non-matching con-
trast bars is that the 1D profile of one eye is inverted9. Thus instead of
summing the weighted sum of inputs from both eyes in the activity equa-
tion, I subtract one weighted sum from the other in the mismatch condition.

The binocular interaction profile is then produced as defined by Anzai
et al. (1999c) by subtracting non-matching contrast profile from matching
profile, which is illustrated in figure 6.

2.3.2 Calculating disparities from SVD components

Subsequently, a singular value decomposition (SVD) is conducted by using
the built-in MATLAB R© function svd. The SVD finds components of the
original binocular interaction profiles, which are mutually uncorrelated and
weights them according to the influence each component has on the original
profiles, or, put another way, weights them according to the amount of

8the patch containing the 2D-Gabor has a size of 20x20 pixel, its centre in terms of the
Gabor function is (10.5,10.5)

9one bar has value -1, so it inverts the weights e.g. in W rIr

18

Figure 6: Calculation of binocular interaction profile from interaction profiles of
bars with matching contrast and bars with non-matching contrast on the example
of cell 1. XL and XR describe the position of left and right bar with respect to the
RF centre and range between -7.3 and 7.3 pixel. Colours represent activity to a
given configuration of bars. The colourmap is scaled according to the data. Thus
in the match and mismatch profiles blue represents 0 and in the interaction profile
blue corresponds to the negative value given to red and green is 0. Red has an
equal interpretation in all three plots.

variance of the original profile they account for (see e.g. Press et al., 1992).
As a result, the original profiles can be described as a linear sum of their
SVD components.

In my case the SVD is mathematically equivalent to a principal compo-
nent analysis (PCA), if one interprets the binocular interaction profiles as
the covariance matrices needed for the PCA (Anzai et al., 1999c). Thus, the
SVD on binocular interaction profiles could be limitedly circumscribed as a
PCA on bar positions within the RFs.

The outputs of the SVD actually are left (l) and right (r) 1D-profiles for
each SVD component along with its weight w. Thus the first component of
a binocular interaction profile can be computed by

b1 = l1 · w1 · rt
1, where rt

1 is the transpose of r1.

The monocular profiles are fitted with 1D-Gabor functions, which are used
to determine position and phase disparities of the first SVD component.
While phase disparity is computed by simply subtracting left profile phase
from right profile phase, I use a reference cell method for the calculation
of position disparity in correspondence with Anzai et al. (1999c). Thereby
the second component is taken as a reference and is assumed to have no
position disparity. In order to comply to the conventions introduced by
the definition of phase disparity I here subtract right position from left

19

position, which means that a positive disparity corresponds to far stimuli in
both disparities. The resulting calculation for position disparity describes a
relative position disparity and is as follows

∆x = ∆x1 −∆x2, ∆xi = xl
i − xr

i ,

where xl
i and xr

i are left and right Gabor positions of the ith component.
So, with ∆x and ∆xi I obtain distributions for relative as well as absolute
position disparities of first and second SVD components.

For completeness I here also state how I compute disparities directly from
2D-Gabor fits of RFs. Phase disparity is calculated exactly as described
above. I define the horizontal position disparity of one subunit, ∆xi, to be
the distance between two lines running through left and right RF centres,
respectively, with a slope corresponding to the orientation of the RF. The
sign of ∆xi is determined such that it corresponds to xl

i − xr
i . ∆x then

mathematically matches the relative position disparity perpendicular to RF
orientation given in Anzai et al. (1999a).

20

3 Evaluation of simulation results

Many contemporary publications to the topic of binocular cells in striate
cortex discuss the importance of phase versus position encoding of visual
disparity. So this is also the prevalent ground for my comparisons of op-
timally stable cells and real neurons. Here I contrast the simulation with
mainly two physiological data sets, which examine binocular properties of
neurons in V1 on different levels of analysis. The data from Anzai et al.
(1999c) describes binocular properties of functional, complex cell subunits
by evaluating binocular interaction profiles and the data from Prince et al.
(2002a,b) gives measures for disparity tuning of striatal cells obtained with
RDS. Especially, it has to be noted that Prince et al. (2002a,b) examine
solely responses to horizontal disparity, while Anzai et al. (1999c) investi-
gate responses to disparity orthogonal to RF orientation. But before I go
on to these data sets I will give a basic analysis of my subunit RF properties
and will roughly compare the results of this analysis with reported proper-
ties of simple cells. All my comparisons suggest that a stability criterion
can explain many properties of binocular complex cells, but I also find clear
differences between simulation and physiology, which are partly due to the
used cell model. These differences are discussed in section 4.

3.1 Subunit RFs and simple cells

Our cell model allows for infinitely many subunit RF shapes, but Ohzawa
et al. (1990, 1997) point out that subunits should exhibit simple cell-like
RFs, which stand in quadrature phase relationship, in order for the cell to
act as a complex cell. Here I report that stable subunit RFs correspond well
to the proposed binocular energy model, although they also show deviations
in direct comparison with properties of simple cells.

3.1.1 Basic properties

Körding et al. (2004) already showed that optimally stable subunit RFs
obtained with monocular natural images exhibit properties, which would be
expected, if an energy model is assumed to underlie complex cell activities.
These properties include selectivity for stimulus position, orientation and
spatial frequency as well as a phase shift between subunits of about 90◦

(quadrature phase relationship of subunits). I can confirm these findings for
the extension of the simulation to binocular natural images.

All of my subunit RFs are very well described by a 2D-Gabor function
(R2 of fit > 0.9 for all RFs, R2 > 0.97 for 70% of all RFs) and thus they

21

are selective for local contrast, spatial frequency, orientation and position
of a stimulus. The RFs are depicted in figure 7. There it can be seen
that the Gabor wavelets mostly extent over the whole 20x20 pixel sized
RF patches. This is in contrast to simulations with a sparseness objective
in which RFs are more localised and do not extent over a whole patch
(Goldbach, 2004). Nevertheless my RFs still resemble simple cell RFs, which
have been reported to be well described by Gabor functions (Chalupa and
Werner, 2003).

Figure 7: Stable subunit RFs obtained with binocular natural visual images. De-
picted are all 100 simulated neurons, each with four RFs: subunit one left and right
and subunit two left and right (in this order). Values of weights (RFs) are mapped
to greyscale: bright means inputs are weighted positively, dark corresponds to neg-
ative weights. All RFs can be described by Gabor wavelets (R2 of fit > 0.9 for all
RFs).

22

Cells with our cell model become translation invariant, which is an im-
portant property of complex cells, if subunits stand in quadrature phase re-
lationship. Figure 8 illustrates the distribution of phase differences between
subunit RFs, which have been calculated from the corresponding parameter
of the Gabor fits. It exhibits a clear peak at 90◦ and therefore indicates
that most of the simulated cells hold this key component of the energy
model. Apart from this apparent phase difference between subunits other

0 90 180
0

5

10

15

20

25

30

35

40

|1st − 2nd subunit phase| (deg PA)

left
right

Figure 8: Distribution of absolute phase differences between first and second sub-
units in degree phase angle (PA). Dark green shows difference for left RFs of all
cells and light green shows difference for right RFs. Most cells have subunits, which
stand in quadrature phase relationship.

basic properties do not differ between subunits, exactly as it is predicted by
the energy model. So I find strong correlations between orientations, spatial
frequencies and RF centres of the two subunits, which is shown in figure 9.

But figure 9A additionally illustrates one clear difference between simu-
lated RFs and those of real cells, which will also hold for the later analysis
of complex cell response properties. While the population of striatal cells is
in general tuned to all kinds of orientations, simulated cells mostly lack a
tuning to orientations between 45◦ and 135◦ except for plain vertical orien-
tations around 90◦.

23

0 45 90 135 180
0

45

90

135

180
orientation (deg)

2n
d

 s
u

b
u

n
it

A B

C D

0 0.075 0.15 0.225 0.3
0

0.075

0.15

0.225

0.3
spatial frequency (c/px)

0.06

0 5 10 15 20
0

5

10

15

20

x
0

1st subunit

0 5 10 15 20
0

5

10

15

20

y
0

Figure 9: Comparison of basic RF properties between first and second subunits.
For orientation and x- and y-value of the RF centre [x0, y0], values of the left RFs of
all cells are shown. Scatter plots for right RFs are similar and approximately equal
for orientation, respectively. Spatial frequency is the mean of left and right RF
spatial frequencies, but left and right RF frequencies are almost always equal, too.
x0 and y0 are scattered more widely, because it is hard for the fitting procedure to
determine these parameters correctly, which is especially true for low frequency RFs
where RF centres are sometimes estimated to lie at the border of the RF patch with
a value of 20 (centre of RF patch is [10.5,10.5]); RFs with low frequencies (f < 0.06
c/px, 28/100 RFs) depicted as ©. When badly estimated centre values are taken
out, I find a significant correlation between subunits for the RF centre as well
(x0 : r = 0.86, P < 0.001; y0 : r = 0.92, P < 0.001, low frequencies excluded).

24

3.1.2 Binocular properties

As seen above subunit RFs have basic properties similar to simple cells. Al-
though the binocular energy model does not assume that subunits represent
actual simple cells it is an interesting further question whether binocular
properties of subunits and those of simple cells are comparable. Therefore
I calculated disparities within subunits from RF fits as described in section
2.3.2 and contrast them to data reported in Anzai et al. (1999a). I exclude
two cells (52,74) from the simulation data, because their position disparity
exceeds 10 pixel, what indicates that the estimate for position of the centre
of left or right RF and so the whole fit is implausible.

The histograms plotted in figure 10 suggest that the distributions of
disparities in subunits and simple cells have some critical features in com-
mon, but also reveal one main difference between simulation and physiology.
Portrayed are counts of simulated and simple cells with certain phase and
position disparities. Plots in figure 10A, C and E show distributions of
first subunit phase disparity in degree phase angle (PA), phase disparity in
stimulus space in pixel and position disparity in pixel, respectively, whereas
figure 10B, D and F are their biological counterparts. I can not directly
compare the ranges of disparities encoded, because the physiological data
is given in degree visual angle (VA) and it is unclear how to convert this
to pixel as long as biological RF sizes are unknown or differ widely in the
reported data. Nevertheless statements about the form of disparity distri-
butions can be made. So it can be seen that both disparities in stimulus
space of the simulation are Gaussian-like with mean around zero as it is
the case for simple cells. Furthermore Anzai et al. (1999a) report that the
standard deviation of phase disparity in VA is about 1.6 times larger than
the standard deviation of position disparity. A statistical analysis of my
disparity distributions shows that phase has a larger variance than position
(F test: F ratio = 3.32, df = (97, 97), P < 0.001), too, whereby the ratio
of phase versus position disparity standard deviations equals 1.82. So, this
is in good correspondence with the physiological data. On the other hand,
the histograms for phase disparity in PA uncover that here the distribu-
tions in simulation and biology differ. The simulation apparently produces
more large phase differences than are found in simple cells. Accordingly, I
count 29/98 cells with absolute phase differences larger than 120◦ PA in the
simulation data whereas in physiology there are only circa 10/97.

Additional comparisons between subunits and simple cells underline the
discovered relationships. Consequentially, like Anzai et al. (1999a), I do
not find a correlation between position and phase disparities in pixel (r =

25

180120600−60−120−180
0

5

10

15

20

phase disparity (deg PA)

Simulation Physiology

−20 −10 0 10 20
0

20

40

60

phase disparity (px)

N
um

be
r

of
 c

el
ls σ = 3 . 8 3

−20 −10 0 10 20
0

20

40

60

80

position disparity (px)

σ t = 2 . 1
σ = 3 . 7 4relative

true

A

C

E

B

D

F

Figure 10: Phase and position disparity distributions for simulated and simple
cell RFs. A,C,E Histograms for disparities of first subunit RFs. Phase disparity
distribution in PA has a peak at 0◦, but also peaks at the tails at ±180◦. Phase
disparity in pixel does not show this phenomenon and has a standard deviation
of 3.83 px. Position disparities are centred at 0 px and have a smaller standard
deviation of 3.74 px for relative and 2.1 px for true position disparities. B,D,F
Histograms for disparity distributions of simple cells adapted from Anzai et al.
(1999a). All distributions are centred around 0. More than 80% of all phase
differences in PA lie within ±90◦. Standard deviation of phase disparities in VA
is 0.59◦. Position disparities are relative position disparities determined with a
reference cell method. Their standard deviation is 0.52◦. The estimate for standard
deviation of true position disparities is 0.37◦ (given that position disparities of cell
and reference cell are independent).

26

0.11, R2 < 0.01%). Furthermore an assessment of disparities in relation with
RF orientation reveals similar properties, too. In physiology it has been de-
scribed that RFs with horizontal orientations (0◦ ± 20◦) encode a smaller
range of phase disparities than RFs with vertical orientations (90◦ ± 20◦)
(Anzai et al. (1999a): F ratio = 2.94, df = (18, 25), P < 0.01). This is
analogous to simulation data (F ratio = 2.15, df = (30, 34), P < 0.05), al-
though here the variance seems to increase faster from horizontal to vertical
orientations, which is also expressed in the greater P -value.

The data presented here implies that most optimally stable cells building on
the used cell model are a good realisation of the binocular energy model. In
addition I find major similarities between subunit RFs and those of simple
cells, which might be particularly interesting from the perspective that al-
ready Hubel and Wiesel (1962) proposed that complex cell responses could
be constituted on simple cells as their input. Nevertheless not all properties
of simple cells are reflected in the population of subunit RFs. Differences in
the distributions of orientations and phase disparities in degree PA are my
main corresponding findings here.

3.2 Comparison to complex cell data from Anzai et al.

Subunit RFs of real neurons can not be determined directly, but have to be
estimated from the top-level output of the complex cells. Here I imitate the
method from Anzai et al. (1999c) for the estimation of binocular subunit RF
properties from responses of cat complex cells and compare mine with their
results. I notice that this method does not recover interaction profiles of the
original subunits, but rather computes functional subunits with resembling
properties. Nonetheless, some of the findings from the direct RF analysis are
represented in the binocular interaction profiles as well. Correspondingly I
again find several similarities between optimally stable cells and real neurons
and as major differences I report overrepresented tails in the distribution of
phase encoding in simulation data and a dependence of disparity magnitudes
on preferred orientation of simulated cells.

3.2.1 SVD components of binocular interaction profiles as sub-
units

Binocular interaction profiles represent the different responses of a cell to
stimuli shown at different positions in the two eyes (see methods 2.3.1). If
these profiles exhibit elongated regions of uniform activation along the front-

27

parallel axis where the position difference of left and right stimuli are equal
(axis of equal disparity), then the corresponding cell is disparity selective.
Except for two cells (25,76, very low spatial frequency) all of the simulated
cells show clear elongated regions along the frontoparallel axis (example
depicted in figure 6) similar to the description of disparity selective complex
cells in Anzai et al. (1999c).

By calculating quadrature (mutually uncorrelated) components of the
binocular interaction RFs with singular value decomposition, Anzai et al.
(1999c) assume to obtain interaction profiles of underlying functional, com-
plex cell subunits. They report that in more than 50% of the examined cells
the SVD gives evidence for the existence of only two components, which sig-
nificantly contribute to the binocular interaction profile of the cells. Thereby
a key prediction of the energy model is confirmed. Nevertheless they also
find neurons in which the interaction profile can be decomposed into three or
four major components. In contrast, the SVD performed on simulated inter-
action profiles does not identify cells with more than two key components as
expected for a two subunit model. Nonetheless, the population averages of
the data variances to which the different components contribute (component
weights) are quite similar in both data sets (see figure 11). Correspondingly
the percentage of variance contributed by the first two components is circa
80% in physiology while it is about 87% in my simulation.

There are a few simulated cells for which the first SVD component al-
ready accounts for more than 70% of the data variance, what indicates that
these components are no correct replication of the underlying subunits, be-
cause the subunit RFs have usually well balanced amplitudes as can be seen
in figure 7. Rather the components should be seen as functional subunits,
which are only linear combinations of subunits. Actually, if I compute binoc-
ular interaction profiles of the single subunits and compare those with the
SVD components, it turns out that these seldom match. Instead the com-
ponents represent the mean of subunit interaction profiles, or rotated, or
shifted versions of them. An example of this behaviour can be seen in figure
12. Although consequently not the properties of true subunits are com-
pared in the following, the comparison is still of interest, because functional
properties of the cells are revealed.

3.2.2 Disparity encoding in component interaction profiles

The SVD on binocular interaction RFs conveniently gives monocular profiles
of the component interaction profiles as output. I then use the monocular
profiles to determine the component disparities by fitting 1D-Gabor func-

28

1 4 7 10 13 16
0

25

50

75

100

component number

m
ea

n
pe

rc
en

ta
ge

of
 to

ta
l v

ar
ia

nc
e

cumulative
individual component

BA

Figure 11: Contribution of components 1 to 16 to the data variance. Each data
point represents the average of the population and error bars visualise ±SD. A Only
the first two components contribute significantly to the variance in simulation data
while taken together these two account for circa 87% of the variance. (n = 100)
B In real neurons sometimes three or four components need to be considered to
explain the data variance. Nevertheless the mean values are similar to those in
A and the first two components already account for circa 80% of the variance.
(n = 48)

tions to left and right profile and evaluating their parameters. All Gabor fits
account for more than 96% of the variance of the curves, but I again exclude
two cells (27,95) from the analysis, because their position disparities exceed
10 px implying bad fits. Thus, I here compare the simulation data set with
size 98 to the one from Anzai et al. (1999c) of size 48.

The binocular energy model predicts that apart from a phase difference
the subunits share their RF parameters such as preferred spatial frequency,
orientation and disparity. Anzai et al. tested for this relation between first
and second SVD components and found good correspondence with the pre-
diction. However, while in simulation most of the parameters more or less
agree in first and second components, there is no correlation between the
Gabor position parameters as illustrated in figure 13. Since there is a cor-
relation, when RFs are considered directly, this has to be a by-product of
intermediate processing steps. One problem may be that inaccuracies accu-
mulate along the path to monocular profiles and because position parameters
are quite small, they are sensitive to such changes.

If it is true that estimates for Gabor position parameters of the monoc-
ular profiles are very noisy, then one would expect that the estimated dis-
tribution of position parameters is wider than the real one. Anzai et al.

29

Figure 12: Binocular interaction profiles of subunits compared to those of first and
second SVD components. If there is a dominant first SVD component, like here (cell
70), this resembles more the mean of the subunit interaction profiles rather than a
single subunit. Otherwise the first component has been observed to represent the
first subunit, the second subunit, or rotated, or shifted versions of them.

−5 0 5
−5

0

5

Gabor position (px)

G
ab

or
 p

os
iti

on
 (

px
)

BA

1st SVD component

2n
d

S
V

D
 c

om
po

ne
nt

envelope center (deg)

en
ve

lo
pe

 c
en

te
r

(d
eg

)

Figure 13: Comparison of Gabor position parameters (x0) in first and second SVD
components. A There is no correlation between x0 in components of simulation.
Black circles represent right profiles and light-coloured circles left. Data points
lying outside the shown region are plotted on the nearest border. B Anzai et al.
(1999c) find good agreement between the first two SVD components.

30

(1999c) report that position disparity of the first SVD component is limited
to a relatively small extent compared to phase disparity. While they find
that the standard deviation of phase disparities in pixel is about three times
larger than the standard deviation of relative position disparities (SD ratio:
3.05), the distribution of phase disparities is only marginally wider than
the distribution of relative position disparities in simulation data (SD ratio:
1.22) although I observe more large phases in PA when contrasted to phys-
iology (histograms depicted in figure 14). Accordingly, the expected effect
of noisy position estimates might have introduced this discrepancy. Thus,
there would only be a marked divergence between the disparity distributions
in simulated and real cells in the distribution of phase in PA suggesting that
there are more cells in the simulation, which have monocular interaction
profiles with different shapes.

For simple cells it has been reported that neurons with horizontal ori-
entations predominantly encode small disparities which is thought to reflect
that there are greater horizontal than vertical disparities in natural stimuli,
because of the lateral displacement of the two eyes. However, this depen-
dence of disparity on preferred stimulus orientation seems not to be existent
for SVD components of complex cell interaction profiles. In figure 15 mag-
nitudes of relative position and phase disparities are plotted against RF
orientation. In both, simulation and data from Anzai et al. (1999c), cells
with low orientations also encode a large range of phase disparities in PA.
Nevertheless in simulated cells with horizontal orientations a slight tendency
towards a smaller range of disparities can be observed, which is clearer with
disparities in px (figure 15C) and there even significant on a F test between
the variance of phase disparities in cells with orientations ±30◦ from horizon-
tal and the variance of phase disparities in cells with orientation ±30◦ from
vertical (F ratio: 1.93, df=(30,52), P < 0.05). Therefore, the SVD com-
ponents in the simulation reflect the postulated property of natural stimuli
that large vertical disparities are not as frequent as horizontal ones, whereas
this is apparently not represented in components of complex cells.

Figure 15E,F illustrates the relationship between disparity of SVD com-
ponents and RF spatial frequency. It has been proposed that a size-disparity
correlation in which the range of disparities encoded is limited dependent
on the periodicity of the RFs is advantageous for determining the correct
depth of a stimulus Marr and Poggio (1979). Such a correlation is expected
when phase is the dominant encoding principle, because the maximum phase
disparity in pixel (±180◦ PA) directly depends on RF spatial frequency. As
seen in the figure, phase disparities in pixel are widely scattered under the
maximum phase limit in simulation and physiology though the scatter in

31

180120600−60−120−180
0

5

10

15

phase disparity (deg PA)

Simulation Physiology

−20 −10 0 10 20
0

10

20

30

40

phase disparity (px)

N
um

be
r

of
 c

el
ls σ = 3 .3 9

−20 −10 0 10 20
0

20

40

60

80

position disparity (px)

σ t = 1 .5 5
σ = 2 .8relative

true

A

C

E

B

D

F

Figure 14: Phase and position disparity distributions of first SVD component for
simulated and simple cells. (figure 10 for same comparison on subunit RF level)
A,B The distribution of phase disparity in PA is much broader in the simulation.
Especially phases near ±180◦ are more frequent. C,D,E,F Position disparity is
considerably denser compared to phase disparity in physiology (SD ratio: 3.05,
relative position; 4.27, estimated true position). In simulated cells this is similar,
but not as strong (SD ratio: 1.22, relative; 2.19 true position), which might be due
to inaccuracies in the calculation.

32

0 15 30 45 60 75 90
0

45

90

135

180

RF orientation (deg)

|p
ha

se
 d

is
pa

rit
y|

 (
de

g
P

A
)

0 15 30 45 60 75 90
0

3

6

9

12

RF orientation (deg)

|d
is

pa
rit

y|
 (

px
)

phase position

0.05 0.1 0.2
0

3

6

9

12

RF spatial frequency (c/px)

|d
is

pa
rit

y|
 (

px
)

phase position

A

C

E

B

D

F

Figure 15: Relation of first SVD component disparities to RF orientation and
spatial frequency. A,B In simulated and real cells the scatter of phase disparities
in PA is large for all RF orientations. C,D While magnitudes of phase disparity in
pixel are more or less evenly distributed in data from real neurons with horizontal
or vertical orientation, the variance of phase disparities is smaller for simulated
cells with horizontal orientation (0 ± 30◦) than for cells with vertical orientation
(90 ± 30◦) (F ratio: 1.93, df=(30,52), P < 0.05) E,F A size-disparity correlation
is found in both data sets. Solid line represents upper limit for phase disparities
(180◦ PA), dashed line corresponds to 90◦ phase in PA. Biological data from Anzai
et al. (1999c). Position disparities are relative position disparities.

33

physiology is not as evenly distributed as in simulation. Nonetheless, a
clear dependence of phase disparity in pixel on RF spatial frequency can be
observed in both data sets (regression analysis in data from Anzai et al.:
slope= −1.99, P < 0.01) while there is no such dependence between phase
disparity in PA and RF spatial frequency (not shown). Furthermore, An-
zai et al. (1999c) find that position disparities are generally small and their
range does not depend on RF spatial frequency (regression slope = -0.3, P =
0.07). In simulated cells, on the other hand, position disparities reach quite
high values and it seems that they do depend on frequency as well, but it is
unclear whether this reflects real properties of cells or is just a product of
the above mentioned noise.

All in all the analysis of binocular interaction profiles reveals many simi-
lar properties of optimally stable and binocular complex cells. Both exhibit
elongated regions along the frontoparallel axis within the interaction pro-
files suggesting sensitivity to disparity independent of stimulus position in
the RF. Although a SVD on binocular interaction profiles does not recover
the original subunit interaction profiles, the resulting components can be
used to describe functional properties of the cells. Thereby the number of
components found in physiology largely supports the use of a two-subunit
energy model. Furthermore, the distributions of the different disparities in
simulation and physiology show similar tendencies, which is also true for
their relation to RF parameters spatial frequency and orientation. However,
the analysis again yields that there are a lot more cells with high magnitude
phase disparities (PA) in simulation than in biology. Additionally, simulated
cells seem to be specialised for horizontal disparities while this is not the
case for real complex cells.

3.3 Comparison to RDS data from Prince et al.

Prince et al. conducted an extensive physiological study of disparity tun-
ing in monkey striate cortex in which they recorded responses to RDS from
787 cells. They quantified sensitivity for horizontal disparity of cells with
the DDI (Prince et al., 2002b) and further examined 180 strongly dispar-
ity tuned cells by comparisons of fitted Gabor function parameters (Prince
et al., 2002a). Unfortunately they did not discriminate between simple and
complex cells in most of their analyses, but they classified 57 out of 226 cells
for which they determined the F1:F0 ratio as simple (25%) suggesting that
a large majority of reported results belong to complex cells. Furthermore
they found no correlation between F1:F0 ratio and DDI, what indicates that

34

simple and complex cells have similar disparity sensitivities, which is sup-
ported by data from Anzai et al. (1999a,c) where distributions of phase and
position parameters of simple and complex cells are similar, too.

I computed responses of my optimally stable cells to RDS with horizon-
tal disparity as described in methods (2.2) and analysed them analogous
to Prince et al.. All simulated cells exhibit statistically significant modula-
tions of their disparity tuning curves. Although response types are largely
comparable, my investigations uncover that simulated tuning curves are of-
ten wider and variances of data points differ from those of real neurons.
Moreover, while in physiology phase and position encode similar ranges of
disparity (phase slightly larger), disparity of simulated cells is predominantly
determined by the phase component.

3.3.1 Activities to RDS and disparity sensitivity

Prince et al. (2002b) provide data in which they quantify activities of cells in
V1 to RDS with horizontal disparity in order to make statements about the
cells’ strength of disparity tuning. They report that the variance of firing
of their cells increases with mean firing rate. This relation is long known
for cortical neurons (see Shadlen and Newsome, 1998, for discussion) and
does not depend on the stimuli used (as long as they lead to the same mean
firing). Variance of artificial activities, on the other hand, is the direct result
of variability in the given stimuli, because in the calculation of activity to a
certain stimulus no random process is involved. Thus the variance stabilising
transform (square root of activities) employed by Prince et al. deals with a
different kind of variance than I have given from my simulated cells. Then
again, Prince et al. apparently define all RDS with the same disparity as
one stimulus, which gives me the opportunity to compare their variances
of mean firing rate to such a stimulus with my variances of activities to
different RDS with equal disparity. Still this comparison should be judged
with care, since the variances may result from different sources of variability.

Unfortunately Prince et al. do not give direct figures of unstabilised
mean firing rates, but they report that before their square root normali-
sation Fisher transformed correlation values of mean firing rates and vari-
ances are 0.86 ± 0.72 (SD) on average over cells. The corresponding value
for the Fisher transformed correlation of artificial activities to RDS with
a certain disparity and their variances is 2.32 ± 0.19 indicating that this
correlation is by far stronger than the one found in biology. Figure 16 illus-
trates this dependency of variability and strength of response very clearly.
There, mean activities to equal disparity RDS are plotted against their vari-

35

ance and standard deviations. It can be seen that the average of activities
has approximately a quadratic relation to variance and accordingly a lin-
ear one to standard deviation. Coherently I find that the ratio between
standard deviation and mean activity is almost constant around a value of
0.53 (±0.018). Prince et al. diminish the reported correlation to a value of
0.21± 0.68 (Fisher transformed) by the square root transformation of their
mean firing rates. The same operation on my activities reduces correlation
only marginally (2.02± 0.27) and is therefore useless from that perspective.
Another effect described by Prince et al. of this procedure was that it re-
moved a positive skew from the response distributions for single stimuli. I
made similar observations. However, since this is consistent over all cells
and stimuli and the ratio of standard deviations and means is still approxi-
mately constant (0.28± 0.009), I do not apply the square root transform to
my data.

0 5000 10000 15000
0

2

4

6

8
x 10

7

va
ria

nc
e

mean activity
0 5000 10000 15000

0

5000

10000

15000

st
an

da
rd

 d
ev

ia
tio

n

mean activity

 A B

Figure 16: Variability of artificial activities. A Each data point represents mean
activity of one cell to 1000 different RDS with a certain disparity plotted against its
variance (41 different disparities · 100 cells = 4100 data points). The line describes
the function y = 0.532x2 where 0.53 is the ratio of standard deviation divided by
mean. B Same as A but with standard deviation. Mean and standard deviation
have a linear relationship and their ratio is approximately constant at 0.53± 0.018.
Plots with activities which have been scaled by a square root transform are very
similar although ratio of standard deviation versus mean is reduced (0.28± 0.009).

I discussed these matters of variability in activities at the beginning, be-
cause the reported variances have strong influence on the DDI, which takes
them into account in order to quantitatively express discriminability of max-
imum and minimum points on the disparity tuning profile. The idea is to
rate tuning curves with lower variances better than tuning curves with the
same strength of modulation but higher variance. As variability of simu-
lated cell activities is considerably greater than the one found in physiology,

36

it is expected that the values of the DDI are lower. This can be seen in
figure 17. Values for the DDI of simulated cells range from 0.03 to 0.16, but
still offer a good description of disparity discriminability. So, for example,
all very low frequency tuning curves have DDI< 0.06 independent of their
mean activity while tuning curves with higher frequency, that means with
more considerable tuning, also get higher DDI values. Additionally Prince
et al. tested their cells for disparity selectivity with a one-way ANOVA on
their square root firing rate data and report that 55% of their V1 neurons
show significant modulations at the 5% level. Although the assumptions of
normally with equal variance distributed data are violated by the artificial
activities10 all 100 of my cells show highly significant (P � 0.01) modu-
lations with disparity on a one-way ANOVA. This puts forward that even
though DDI values are low through high variance, all of the simulated cells
significantly change their response with disparity, which is backed by the fact
that all of my cells are binocular according to the ODI (µ = 0.49±0.03 SD).
Consequently, the DDI values form a continuum from low to high disparity
sensitivity, which is similar in biology.

0.05 0.1 0.15
0

5

10

15

20

DDI

nu
m

be
r

BA

Figure 17: Histograms of DDI values of simulated and striatal cells. A DDI
values for 100 simulated cells. Maximum is 0.151 and minimum is 0.035. A one-
way ANOVA revealed that all cells exhibit significant modulations with disparity
(P � 0.01). B DDI of 787 V1 neurons (data from Prince et al. (2002b)). Dark
shaded are neurons which have significant disparity tuning on a one-way ANOVA
(P < 0.05). Neither in A nor in B two distinct populations can be seen.

The DDI has been used to discover relationships between the strength
of disparity tuning and other cell properties. First of all Prince et al. found

10The ANOVA test is known to be robust to modest violations of these assumptions.

37

that the DDI is independent of mean firing rate. In contrast, as variances
of simulated activities heavily depend on their means and the DDI in turn
depends on these variances it is no surprise that the DDI decreases with
increasing mean activities for my data, but this dependency is more mod-
erate than anticipated (Spearman’s rank: rs = −0.33, P < 0.001), which
can be traced back to a simultaneous increase of amax − amin from the def-
inition of the DDI, eq. 5 (rs = 0.71, P � 0.001). A scatter plot of mean
activity versus DDI is depicted in figure 18A and B. Further plots in this fig-
ure show the DDI plotted against RF spatial frequency and RF orientation.
Whereas frequency is not significantly correlated with the DDI (rs = −0.09,
NS) similar to physiology, I find a clear correlation between DDI and RF
orientation (rs = 0.69, P � 0.001) contrary to physiology. This relation is
to some extent predicted by the binocular energy model, which states that
the tuning curves of cells with preferred horizontal orientations to stimuli
with horizontal disparity will have a low frequency and thus low DDI values
will be assigned to them (see above). Correspondingly, the biological finding
that orientation is not correlated with the DDI could be explained in two
ways. Either Prince’ DDI does not rate all low frequency tuning curves low,
or the prediction of the energy model fails. As one can see in figure 22 this
prediction is fulfilled to some degree by the measured V1 neurons, hence
the former must be true, what indicates that ratings of my DDI and Prince’
deviate, if certain tuning types are judged.

3.3.2 Tuning types described by position and phase encoding

Disparity tuning curves are often classified into six different categories ac-
cording to their shape (Poggio et al., 1988). Here I examine tuning curves of
simulated neurons for whether they exhibit the reported shapes. Thereto,
I have fitted the tuning curves with Gabor functions and compare their
parameters with those published by Prince et al. (2002a). Furthermore I
contrast estimates for position and phase encoding of disparity from this
study with disparity encodings obtained from my cells.

All of my tuning curves are well described by 1D-Gabor functions and
have a R2 value > 0.93, but I exclude four cells, because confidence intervals
of their fits are complex, which indicates that these fits can not be trusted
due to especially large confidence intervals11. So, a population of 96 cells is
left for comparison with Prince et al.’s population of 180 real neurons.

11this criterion is more or less arbitrary, since there are other cells with large, but
non-complex confidence intervals, but I did not want to exclude too many cells with this
criterion since Prince et al. (2002a) have not done this either

38

0 5000 10000

0.05

0.1

0.15

mean activity

10
−2

10
−1

10
0

0.05

0.1

0.15

RF frequency (c/px)

D
D

I

0 45 90

0.05

0.1

0.15

RF orientation (deg)

A

C

E

B

D

F

Figure 18: Relationship between DDI and other cell properties in simulation (left)
and physiology (right, data from Prince et al. (2002b)). Correlation has been
tested with Spearman’s rank in all cases. A,B DDI versus mean activity. A slight
correlation can be found in simulation data (rs = −0.33, P < 0.001), but not
in physiology. This correlation might be an overestimation, since all points over
5000 activity with DDI< 0.05 represent low frequency tuning curves, which got
consistently low DDI values. C,D DDI is neither in simulation (rs = −0.09, NS)
nor in real neurons (rs = 0.07, NS) significantly correlated with frequency of the
preferred grating stimulus. E,F Although preferred orientation of a cell and DDI
show no significant correlation in biology (rs = 0.06, NS), they do in simulation
data (rs = 0.69, P � 0.001) as predicted by the energy model.

39

The characteristics of the six tuning curve types are as follows: tuned
zero (T0) cells have a tuning curve with a narrow peak at zero disparity,
tuned excitatory (TE, near TN and far TF) cells resemble T0 cells, but
their peak is shifted to near or far disparities, tuned inhibitory (TI) cells
exhibit a trough around zero disparity and near (NE) and far (FA) cells
show broad tuning for near and far disparities, respectively while being
inhibited at opposite disparities. Therefore phase and position parameters
of the fitted Gabor should suffice in order to classify the tuning curves
according to this classification scheme. Then tuning curves with phase near
zero correspond to T0 or TE types dependent on position while curves with
phase around ±π are said to be TI and asymmetrical curves with phase near
±π/2 can be classified as NE and FA, respectively. A scatter plot of these
two parameters can be seen in figure 19 along with examples of tuning curves
of all types from simulation and physiology. Prince et al. (2002a) found all
tuning curve types in their data, but there were no clusters of certain types,
rather they report a continuum of tuning curve forms from one type to
another. This is comparable when disparity response profiles of simulated
cells are considered. However it is hard to find good examples for TE tuning
curves. Although there are cells, which are sharply tuned (similar to cell 22,
T0) to near and far disparities their tuning curves are more asymmetric than
symmetrical around their peak. Furthermore the peak disparity of TE cells
is always near zero in my case12. This is comprehensible from the fact that
disparity of TE cells is encoded by position disparity alone, because tuning
curves of TE cells are symmetrical (phase = 0). As I have shown in section
3.1.2 that RFs of simulated cells exhibit only small position disparities, it
follows that TE cells can only be tuned to disparities near zero.

Such a conclusion is valid, because the finding from RFs directly transfers
to parameters of the tuning curves as can be seen in figure 20. There position
is plotted against phase, which has been transformed into pixel space. It
is clearly recognisable in this figure, that the distribution of phase shifts in
pixel is much broader than that of position shifts. While position parameters
have a mean of 0.22 px with standard deviation 1.25 px these values for
phase are much larger: 0.89 ± 6.1 px. Compared to the RF analysis in
section 3.1.2 this discrepancy has even increased with RDS since there the
ratio of the standard deviations has been 1.82 while here it is 4.89, which
is most probably the result of the use of horizontal disparities, because in

12Although points with phase near zero and larger position parameter can be seen in
the scatter plot of figure 19A, I would not classify them as TE, because these are very
broad Gaussian-like tuning curves

40

−20 0 20
18

35

ac
tiv

ity
in

 h
un

dr
ed

s

c92

−20 0 20
10

41

c69

−20 0 20
53

98

c26

−5 0 5
−180

−90

0

90

180

Gabor Mean Position (px)

G
ab

or
 P

ha
se

 (
de

g
P

A
)

−20 0 20
9

24

−20 0 20
10

21

−20 0 20
11

25

disparity (px)

T0

TF

FA

TNTINE

c88

c99

c22

B

A

Figure 19: Tuning types in simulation (A) and physiology (B, adapted from Prince
et al. (2002a)). See text for description.

41

comparison to disparities orthogonal to RF orientation the tuning curves
show an increase in spatial scale and as position disparities seem not to
have great influence in the encoding of disparity in my cells they even loose
importance. However, the most important point made in figure 20 is that
here an obvious difference between simulation and physiology is exposed.
Although Prince et al. report that in their data the range of disparities
encoded with phase is slightly larger than that encoded with position (SD
ratio: 1.25), this finding is by far not as strong as it is in my data.

0

20

40

−10 0 10

−10

0

10

position shift (px)

ph
as

e
sh

ift
 (

px
)

0 20 40

BA

Figure 20: Comparison of phase and position parameters in simulation and phys-
iology. Phase has been transformed into position space by division through −1·
spatial frequency of the tuning curve. A Gabor mean position encodes a much
smaller range of disparities than Gabor phase in simulated cells (SD ratio: 4.89).
Position and phase are negatively correlated (rs = −0.52, P � 0.01), that means
contributions of both cancel each other, but as phase is generally considerably
greater than position, a large range of disparities can still be encoded. B Position
and phase parameters encode similar ranges of disparity in data from Prince et al.
(2002a) (SD ratio: 1.25). Only a slight positive correlation is observed (rs = 0.24,
P < 0.001).

This discrepancy between the ratios of standard deviations in simulation
and physiology is fostered through a further difference, which is depicted in
figure 21. In the transformation of phase in PA to pixel a large phase in
PA will produce a large value in pixel. However, for a large phase in PA
there might be no straightforward interpretation of a large phase in pixel
in terms of position shifts and preferred disparity. Obviously, this problem
mainly concerns TI tuning curves, which have the largest phases (near ±π),
but are only inverted versions of T0 curves and their shift in phase can

42

not be compared to a shift in position with equivalent magnitude. Thus,
more large phases will lead to a disproportionate representation of phase in
the ratio of standard deviations when preferred disparities are concerned.
This is the case when simulated cells and real neurons are compared, since
there are more tuning curves with large phase in the simulation data than
reported in biology (see figure 21). Correspondingly, this is expressed in
the percentage of cells classified as TI by a criterion proposed in Prince
et al. (2002a)13 where only 16% of all cells were labelled TI. In contrast,
I classify 26% of the simulated cells as TI according to the same criterion.
Nevertheless, I here interpret the ratio of standard deviations as a measure to
estimate different contributions of phase and position to the characteristics
of the tuning curves and it still shows that the phase parameter has a much
greater influence on tuning curves than position in my data.

 7

 14π/2

−π/2

0π

BA

Figure 21: Distribution of fitted phases as polar plots. A There is a substantial
number of simulated tuning curves with phases near ±π. (distance from origin
represents number of tuning curves with that phase) B In physiology, on the other
hand, large values for phase are rare and phases near zero dominate. Data replotted
from Prince et al. (2002a) (solid line) and includes data from Nieder and Wagner
(2000) (dotted line) and Anzai et al. (1999a,c) and DeAngelis et al. (1991) (dashed
line)

A last thing that I note from figure 19 regards the T0 cell there (c22).
The tuning curve of this cell exhibits several peaks, which is seldom reported
for real neurons. This phenomenon can be quantified as the ratio of the
wavelength of the fitted tuning curve (λ = 1/f) to the standard deviation

13TI: |phase| > 3
4
π

43

of the fitted Gabor (W) and thus gives an estimate for the number of cycles
in one standard deviation. Importantly, for this analysis I prohibited values
of W greater than 10.25 px, that means I set W = 10.25 px for all tuning
curves with W > 10.25 px. The rationale behind this is the following:
Gabor functions with W much greater than 10.25 px allow modulation of
the disparity tuning curve behind ±20 px, what is implausible, because all
disparities smaller than -20 px and greater than 20 px represent uncorrelated
stimuli in left and right RFs. Therefore the tuning profiles should be flat
in these regions. So, if W > 10.25 px, this estimate has to be wrong and
W = 10.25 px is the next plausible estimate. This non-linear transformation
of the standard deviation parameter does not change the subsequent results.

0 15 30 45 60 75 90
0

0.2

0.4

0.6

0.8

1

RF orientation (deg)

no
. c

yc
le

s
in

 1
 S

D

c22

BA

Figure 22: Number of cycles per standard deviation of the fitted Gabor (W/λ) as
a function of RF orientation. A The minimum of W/λ in simulated tuning curves
is 0.14 and the maximum is 0.94. In red c22 from figure 19 is shown. B In data
from Prince et al. (2002b) tuning curves cover a smaller range of W/λ and most
of them stay below 0.5. Yet, both data sets exhibit a correlation predicted by the
energy model of W/λ with RF orientation as determined with a F test between
variations of cells in the first halfs of the plots (0-45◦) and second halfs of the plots
(45-90◦) (simulation: P < 0.001, physiology: P < 0.005).

Figure 22 depicts this ratio W/λ in relation to preferred orientation of
the cells. There it can be seen that W/λ ranges from approximately 0.15
to 0.9 in simulation while the same quantity ranges only from about 0.05 to
0.5 in real tuning curves. Nonetheless I find in both data sets a dependence
of the number of cycles per SD on orientation as expected when the energy
model is assumed (see end of last section 3.3.1). Moreover, this relationship
is significant when a F test is considered, which compares the variances of
W/λ of cells with orientations smaller than 45◦ from horizontal with this of

44

cells with orientations smaller than 45◦ from vertical in simulation (F ra-
tio: 4.66, df=(33,61), P < 0.001) and physiology (F ratio and df not given,
P < 0.005).

In summary, investigating disparity tuning of simulated cells with random
dot stereograms yields a different type of response variances if compared
with response variances of neurons in V1. As a result, a measure which
takes these variances into account, like the DDI, also differs in the two con-
ditions. Moreover, the distribution of the DDI for optimally stable cells has
to be altered with respect to physiology, because in contrast to physiology
all optimally stable cells show significant disparity tuning. Although general
types of this tuning are similar to findings in biology, the analysis of simu-
lated disparity tuning reveals further discrepancies. So, I frequently observe
tuning curves with several peaks indicating that even cells with high pre-
ferred spatial frequency have wide RFs, which is uncommon in real neurons.
In correspondence with findings in previous sections phase is the dominant
disparity encoding principle in my data, but this dominance exceeds by far
the one reported in Prince et al. (2002a). Furthermore the tendency to-
wards large phase disparities in PA is carried over from the RF level, but is
still not found in data from real cells. I conclude that optimally stable cells
exhibit response properties to RDS, which are roughly similar to those of
binocular neurons, although clear deviations between both can be seen on a
closer look.

45

4 Discussion

In this work I have compared properties of binocular complex cells to prop-
erties of simulated cells, which exhibit optimally stable activity to binocular
natural stimuli in order to examine whether a stability criterion can be used
to explain binocular properties of striatal cells.

From infinitely many possibilities the optimisation for stability has se-
lected Gabor wavelets as subunit RF shapes. Consistent with physiological
data these subunit RFs have all their properties in common apart from
phase, which stands in quadrature relationship between the two subunits
of the cell model. Thus, given a slightly modified version of the binocular
energy model as skeleton, most optimally stable representations of natural
stimuli implement the Gabor energy model. Consequentially, stable cells
suffer from the same shortcomings as the Gabor energy model, which are
discussed in the following subsection (4.1). On the other hand, the energy
model has been successfully used to model certain properties of complex
cells. Correspondingly I find several similarities between simulated and stri-
atal cells such as their sensitivity to stimulus orientation and spatial fre-
quency. Furthermore I report that stable cells exhibit elongated regions
along the frontoparallel axis in binocular interaction profiles demonstrating
that these cells respond to stimuli with a certain disparity independent of
their position in the RF, which is a crucial feature of binocular complex cells
(Anzai et al., 1999c). It has also been found in physiology that two subunits,
as used here, are sufficient to represent the responses of most complex cells
(Anzai et al., 1999c). Additionally the Gabor energy model successfully pre-
dicts that tuning curves to random-dot stereograms with different disparity
can be described by a 1D-Gabor function. So, this is the case for optimally
stable, but also for striatal cells. Prince et al. (2002a) report that tun-
ing curve shapes form a continuum between particular prototypical shapes,
what is comparable with the tuning curves of simulated cells although not
all prototypes are as frequent as in real cells.

Quantitative comparisons of binocular properties also suggest many sim-
ilarities between optimally stable and real cells. Accordingly, all my analy-
ses yield evidence that the distributions of preferred disparity of stable and
complex cells have core features in common. Especially, there is a similar
dominance of phase encoding in simulation as reported in physiology, which
is expressed in a greater range of disparities encoded by a phase mechanism
than by a position difference between subunit RFs. Furthermore, in simple
cells, which are thought to constitute functional subunits of complex cells,
phase and position disparities have been found to be uncorrelated (Anzai

46

et al., 1999a) as observed in subunit RFs from the simulation. In general
subunit RF properties and those of simple cells match surprisingly well. For
example, in both, simulation and physiology, it has been noticed that RFs
with horizontal orientation encode a smaller range of disparities than those
with vertical orientation (Anzai et al., 1999a). A further example, which
also extends to the complex cell response level, is a size-disparity correlation
where the range of disparities represented depends on the periodicity of the
tuning curve. This correlation is due to the dominance of phase encoding,
because disparities encoded by this scheme are limited by spatial frequency
of the RFs. Correspondingly a size-disparity correlation is evident in simu-
lated and striatal cells (Anzai et al., 1999a,c; Prince et al., 2002a).

Although the similarities between properties of optimally stable repre-
sentations of natural stimuli and those of complex cells are striking I also
observe several clear discrepancies. Many of them are attributable to the
employed cell model, but others may be due to the stability criterion, or
the properties of natural stimuli, or may simply reflect inaccuracies in the
applied methods. The former are discussed below and the latter in the final
subsection (4.2).

4.1 Differences attributable to the binocular energy model

As mentioned above, most optimally stable cells implement a Gabor energy
model. Therefore every discrepancy appearing between this model and real
neurons also holds between stable cells and real neurons. A large part of
the literature concerning binocular striatal cells evaluates properties of the
energy model and I here discuss some shortcomings brought forward so far.

The energy model consists of two subunits, which stand in quadrature
phase relationship, but Anzai et al. (1999c) found complex cells requiring
more than two functional subunits to explain their binocular responses. An-
zai et al. propose that the extra subunits may be needed to extent the RF
of a complex cell in one dimension. But there are more reasons why more
than two subunits may be needed. A substantial one has been published
by Cumming (2002). He reports that independent of RF orientation a V1
neuron modulates its firing rate over a wider range of horizontal disparity
than vertical disparity. In contrast, the energy model predicts that this
depends on orientation, which can be observed in simulated cells. Hence,
several subunits encoding different horizontal disparities may be needed to
be combined in order to yield this preference for horizontal disparity.

Another discrepancy concerns the response to uncorrelated RDS in the
two eyes. According to the energy model this has to be larger than the

47

response to a random-dot stimulus presented solely to the dominant eye,
because monocular responses are combined linearly in the energy model.
Correspondingly, the ratio of ”dominant monocular response” divided by
”uncorrelated response” is consistently smaller than one in simulation data,
but Read and Cumming (2003) found many striatal cells where this ratio
was significantly greater than one and Prince et al. (2002b) also report that
the uncorrelated response is close to the mean of the monocular responses.
Therefore, Read et al. (2002); Read and Cumming (2003) put forward a
modification of the basic energy model in which threshold nonlinearities are
included before monocular activities are combined. Such a model allows for
consistent inhibitory input from one eye and thus a response to uncorrelated
stimuli could be smaller than a response to a stimulus presented only to the
dominant eye. The proposed modification also addresses another limitation
of the basic energy model, which predicts that the response to anticorrelated
RDS14 is the exact inverted version of the response to correlated RDS (Read
et al., 2002). On the contrary it has been found that even though the
response is inverted in V1 neurons the modulation of the response is weaker.

Finally, RFs of neurons are known to extent not only in space, but also
in time (DeAngelis and Anzai, 2003). The here presented framework has no
time dimension and for that reason no time dependent properties of neurons
such as tuning to direction of a moving stimulus can be modelled.

4.2 Other discrepancies and optimally stable representations
of natural stimuli

Not all differences between optimally stable and striatal cells can be ascribed
to the employed cell model. Although the cell model supports sensitivity
to disparity, the optimisation process was free to build RFs, which do not
result in disparity tuning of a cell. Nevertheless I find that all simulated
cells significantly modulate their activity to stimuli with different disparities
while there is a substantial subset of neurons in V1 for which this is not the
case. However, it should be noticed that all cells in the simulation receive
equally strong input from both eyes whereas in striatal cells the strengths
of monocular inputs may be very different. Optimal stability has also been
found to well describe the response of monocular complex cells (Körding
et al., 2004). Thus the question of disparity tuned or not is likely to depend
on the balance of monocular inputs.

Disparity tuning of simulated cells has been tested with RDS. The result-
14black is white, white is black in the different eyes

48

ing activities of stable cells display many different characteristics compared
to the activities of striatal neurons. Especially variances of the responses
to different RDS with equal disparity are much larger in simulation and
increase quadratically with the mean while the ratio of variance to mean
has been observed to be constant in physiology. It has been proposed that
it is beneficial for neurons in a network to maintain such a constant ratio
of variance and mean (Shadlen and Newsome, 1998) and that they may
use certain mechanisms to achieve this, which are apparently missing in the
model. Because variances in simulation and physiology are so different, the
DDI taking them into account also exhibits some divergences between both,
which are not further discussed here.

There is a marked absence of RFs with oblique orientations in the simula-
tion data. This clearly reflects properties of natural stimuli, in which oblique
orientations are not as frequent as horizontal or vertical ones, too (Einhäuser,
2004). The phenomenon is called the oblique effect and it has also been ob-
served in physiological and psycho-physical experiments (Einhäuser, 2004),
but as is demonstrated in figure 18E,F the effect is extremely strong in sta-
ble cells whereas it is not evident in a large data set of monkey striatal cells
from Prince et al. (2002b). Why the effect is completely absent in this data
set while it can be seen in others is not clear to me.

Another discrepancy related to RF orientation arises from Anzai et al.
(1999c)’s finding that in components of binocular interaction profiles of hor-
izontal, complex cells a large range of disparity15 is encoded. Although I
observe a similar trend in the simulation, it still exhibits a preference to
encode a smaller range of vertical disparity as it is expected when monoc-
ular inputs are laterally displaced. Interestingly, the deficiency in vertical
disparity is clearer if subunit RFs are analysed directly. Therefore, it could
be that the method applied in this case reduces the dependence of encoded
disparity range on RF orientation in simulation and physiology. Further-
more a proper evaluation of Anzai et al.’s finding is difficult, because the
data set is rather sparse in the considered regions.

Above I stated as a similarity that there is a size-disparity correlation
between RF spatial frequency and range of encoded disparities. On the other
hand, I do not find a ”size-size” correlation between RF spatial frequency
and the width of the RFs, or formulated differently, RF sizes do not change
with RF spatial frequency and rather extend over their whole possible space,
which equals the size of their inputs (20x20 px). As a result the number of
cycles within disparity tuning curves of stable cells is increased in comparison

15orthogonal to orientation, thus vertical

49

with striatal cells (Prince et al., 2002b). From a stability perspective it
makes sense to expand RFs over the whole patch, since then it is possible
that the response to a small stimulus remains equal, when the stimulus
changes its position to another part of the input or RF, respectively, while
a position shift to an empty part of the RF will extinguish the activity of a
cell in any case. Thus, whether complex cells are adapted to their natural
stimuli to be most stable also depends on whether cells with high spatial
frequency RFs only receive input from a limited part of the visual field, or
more generally, whether RFs extend over the same part of the visual field as
their combined input. Unfortunately, this is extremely hard to investigate.

The most critical observation that I make through all my analyses of
preferred disparity in stable cells is a considerably greater number of large
phase disparities (near ±π) than found in physiology (Anzai et al., 1999a,c;
Prince et al., 2002a) expressed in more different RF shapes between the two
eyes and more TI tuning curves. Goldbach (2004) also found this tendency
in a similar simulation, which implemented a sparseness instead of a stabil-
ity criterion. As a consequence the effect might be due to the properties of
natural visual stimuli, because it is apparently independent of the applied
objective. In return, it needs to be investigated whether opposite contrast
in the monocular stimuli is similarly frequent as large phase disparity in
optimised cells. However such a finding would not help explaining the mi-
nority of phase disparities near ±π in striatal neurons, which would even
be counterintuitive, if an adaptation of neurons to their natural stimuli is
assumed. The issue remains unresolved, but it also contributes to a further
deviation of simulation and physiology. So I notice that phase encodes a
larger range of disparities compared to position in stable cells, which has
been reported from striatal cells, too, except that in V1 the ratio of phase
divided by position differs when contrasted to simulation data. This differ-
ence is highly dependent on the employed method, but it tends to be larger
in optimally stable cells, which could be explained by the higher number of
phases near ±π. Yet, this relationship still needs to be proven quantitatively.

In conclusion, I find striking similarities between stable and complex cells
signifying that also binocular complex cells can be described as forming
optimally stable representations of natural visual input. However, the cell
model should be adapted to incorporate recent advances in the modelling
of striatal neurons and further investigations need to be done to explain an
open discrepancy concerning phase disparity.

50

Acknowledgements

I am grateful to Peter König and Selim Onat under whose supervision I
learnt an awful lot about data analysis in the neurosciences. I thank Markus
Goldbach for being a great fellow and Daniel Weiller for fruitful discussions.
I also thank numerous friends such as Robert Freund, Stephan Weller and
Egon Stemle for providing the needed antipole to do this work. Last but
not least, I am grateful to my grandparents Maria and Rolf Voigt for their
loving support of my studies.

51

References

A. Anzai, I. Ohzawa, and R. D. Freeman. Neural mechanisms for encoding
binocular disparity: receptive field position versus phase. J Neurophysiol,
82(2):874–90, Aug 1999a.

A. Anzai, I. Ohzawa, and R. D. Freeman. Neural mechanisms for processing
binocular information I. Simple cells. J Neurophysiol, 82(2):891–908, Aug
1999b.

A. Anzai, I. Ohzawa, and R. D. Freeman. Neural mechanisms for processing
binocular information II. Complex cells. J Neurophysiol, 82(2):909–24,
Aug 1999c.

L. M. Chalupa and J. S. Werner, editors. The Visual Neurosciences. MIT
Press, 2003.

B. G. Cumming. An unexpected specialization for horizontal disparity in
primate primary visual cortex. Nature, 418(6898):633–6, Aug 2002. doi:
10.1038/nature00909. URL http://dx.doi.org/10.1038/nature00909.

G. C. DeAngelis and A. Anzai. A modern view of the classical receptive field:
linear and nonlinear spatiotemporal processing by V1 neurons, pages 704–
719. Volume 1 of , Chalupa and Werner (2003), 2003.

G. C. DeAngelis, I. Ohzawa, and R. D. Freeman. Depth is encoded in the
visual cortex by a specialized receptive field structure. Nature, 352(6331):
156–9, Jul 1991. doi: 10.1038/352156a0. URL http://dx.doi.org/10.
1038/352156a0.

W. Einhäuser. Bottom-up and Top-down Processing of Natural Scenes. PhD
thesis, Institute of Neuroinformatics, ETH Zürich, 2004.

R. D. Freeman and I. Ohzawa. On the neurophysiological organization of
binocular vision. Vision Res, 30(11):1661–76, 1990.

D. Gabor. Theory of communication. J. Inst. Elec. Eng., 93:429–457, 1946.

M. Goldbach. Quantitative properties of sparse binocular representations
of natural visual images. Bachelor’s thesis, University of Osnabrueck,
Institute for Cognitive Science, Neurobiopsychology department, October
2004.

52

http://dx.doi.org/10.1038/nature00909
http://dx.doi.org/10.1038/352156a0
http://dx.doi.org/10.1038/352156a0

F. Gonzalez and R. Perez. Neural mechanisms underlying stereoscopic vi-
sion. Prog Neurobiol, 55(3):191–224, Jun 1998.

D. H. Hubel and T. N. Wiesel. Receptive fields, binocular interaction and
functional architecture in the cat’s visual cortex. J Physiol London, 160:
106–54, Jan 1962.

K. Körding, C. Kayser, W. Einhaeuser, and P. König. How are complex
cell properties adapted to the statistics of natural stimuli. Journal of
Neurophysiology, 91:206–212, 2004.

D. Marr and T. Poggio. A computational theory of human stereo vision.
Proc R Soc Lond B Biol Sci, 204(1156):301–28, May 1979.

F. Mechler and D. L. Ringach. On the classification of simple and complex
cells. Vision Res, 42(8):1017–33, Apr 2002.

A. Nieder and H. Wagner. Horizontal-disparity tuning of neurons in the
visual forebrain of the behaving barn owl. J Neurophysiol, 83(5):2967–79,
May 2000.

I. Ohzawa, G. C. DeAngelis, and R. D. Freeman. Stereoscopic depth discrim-
ination in the visual cortex: neurons ideally suited as disparity detectors.
Science, 249(4972):1037–41, Aug 1990.

I. Ohzawa, G. C. DeAngelis, and R. D. Freeman. Encoding of binocular
disparity by simple cells in the cat’s visual cortex. J Neurophysiol, 75(5):
1779–805, May 1996.

I. Ohzawa, G. C. DeAngelis, and R. D. Freeman. Encoding of binocular
disparity by complex cells in the cat’s visual cortex. J Neurophysiol, 77
(6):2879–909, Jun 1997.

B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive field
properties by learning a sparse code for natural images. Nature, 381(6583):
607–9, Jun 1996.

S. Onat, C. Kayser, and P. König. On the time course of disparity in natural
visual stimuli. to be published.

G. F. Poggio, F. Gonzalez, and F. Krause. Stereoscopic mechanisms in
monkey visual cortex: binocular correlation and disparity selectivity. J
Neurosci, 8(12):4531–50, Dec 1988.

53

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numer-
ical Recipes in C, The Art of Scientific Computing. Cambridge University
Press, second edition, 1992. URL www.nr.com.

S. J. D. Prince, B. G. Cumming, and A. J. Parker. Range and mechanism
of encoding of horizontal disparity in macaque V1. J Neurophysiol, 87(1):
209–21, Jan 2002a.

S. J. D. Prince, A. D. Pointon, B. G. Cumming, and A. J. Parker. Quan-
titative analysis of the responses of V1 neurons to horizontal disparity
in dynamic random-dot stereograms. J Neurophysiol, 87(1):191–208, Jan
2002b.

J. C. A. Read and B. G. Cumming. Testing quantitative models of binocular
disparity selectivity in primary visual cortex. J Neurophysiol, 90(5):2795–
817, Nov 2003. doi: 10.1152/jn.01110.2002. URL http://dx.doi.org/
10.1152/jn.01110.2002.

J. C. A. Read, A. J. Parker, and B. G. Cumming. A simple model accounts
for the response of disparity-tuned V1 neurons to anticorrelated images.
Vis Neurosci, 19(6):735–53, 2002.

M. N. Shadlen and W. T. Newsome. The variable discharge of cortical neu-
rons: implications for connectivity, computation, and information coding.
J Neurosci, 18(10):3870–96, May 1998.

54

www.nr.com
http://dx.doi.org/10.1152/jn.01110.2002
http://dx.doi.org/10.1152/jn.01110.2002

A Source code

Principal Matlab functions and scripts, which I have written during the work
on this thesis, are listed below. I have organised them into the categories
Gabor fitting, RF analysis, interaction profiles, RDS and displaying.

Gabor fitting

fitGabor1f.m

% [pars,residual,R2,Vres,conf,exitflag] = ...
% fitGabor1f(dataX, dataY, start, showFit, varY)
%
% tries to fit a one dimensional Gabor to the datapoints
% given as X and Y coordinate vectors in dataX and dataY with frequency of
% the Gabor set static to the value given in start values (start)
% start must be a 6-element vector in the form: [A,x0,W,f,phi,Ao]
% if showFit is on (1), data is plotted together with the fit
% if varY is given the values are used as weights (1./varY) for the
% calculation of confidence intervals and R2
%
% output:
% pars - the fitted parameters of the gabor
% residual - value of the residual fitY-dataY
% R2 - R-square (explained variation)
% Vres - residual variance
% conf - confidence intervals for parameters - quadratic approximation
% exitflag - exitflag of optimisation (<1, if no convergence)

% version 1.0 {Sebastian Bitzer}
function [parsFull,residual,R2adj,Vres,conf,exitflag] = ...

fitGabor1f(dataX, dataY, start, showFit, varY)

if (size(dataX,1) > 1)
dataX = dataX’;

end
if (size(dataY,1) > 1)

dataY = dataY’;
end
if (nargin>4)

if(size(varY,1) > 1)

55

varY = varY’;
end

else
varY = ones(1,length(dataY));

end

%% Gabor function to fit
% defined here in order to have easy access to calculated frequency

function [y,J] = gabor(params, x)

A = params(1);
d0 = params(2);
sig = params(3);
f = start(4);
phi = params(4);
RMean = params(5);

y = RMean + A*exp(-(x-d0).^2/(2*sig^2)) .* cos(2*pi*f*(x-d0) + phi);
% y = max(0,y); % this should be on, but makes derivatives difficult

if (size(x,2) > 1)
x = x’;

end

% first partial derivatives (Jacobian)
J(:,1) = exp(-1/2*(x-d0).^2/sig^2).*cos(2*pi*f*(x-d0)+phi);
J(:,2) = A*(x-d0)/sig^2.*exp(-1/2*(x-d0).^2/sig^2) .* ...

cos(2*pi*f*(x-d0)+phi)+2*A*exp(-1/2*(x-d0).^2/sig^2) .* ...
sin(2*pi*f*(x-d0)+phi)*pi*f;

J(:,3) = A*(x-d0).^2/sig^3.*exp(-1/2*(x-d0).^2/sig^2) .* ...
cos(2*pi*f*(x-d0)+phi);

J(:,4) = -A*exp(-1/2*(x-d0).^2/sig^2).*sin(2*pi*f*(x-d0)+phi);
J(:,5) = ones(length(x),1);

end

% second partial derivatives of Gabor function
function rho2G = rho2G(params,x)

56

A = params(1);
d0 = params(2);
sig = params(3);
f = start(4);
phi = params(4);
RMean = params(5);

rho2G = zeros(5,5,length(x));

rho2G(1,2,:) = (x-d0)/sig^2.*exp(-1/2*(x-d0).^2/sig^2) .* ...
cos(2*pi*f*(x-d0)+phi)+2*exp(-1/2*(x-d0).^2/sig^2).* ...
sin(2*pi*f*(x-d0)+phi)*pi*f;

rho2G(1,3,:) = (x-d0).^2/sig^3.*exp(-1/2*(x-d0).^2/sig^2) .* ...
cos(2*pi*f*(x-d0)+phi);

rho2G(1,4,:) = -exp(-1/2*(x-d0).^2/sig^2).*sin(2*pi*f*(x-d0)+phi);
rho2G(2,1,:) = rho2G(1,2,:);
rho2G(2,2,:) = -A/sig^2*exp(-1/2*(x-d0).^2/sig^2) .* ...

cos(2*pi*f*(x-d0)+phi)+A*(x-d0).^2/sig^4 .* ...
exp(-1/2*(x-d0).^2/sig^2).*cos(2*pi*f*(x-d0)+phi)+...
4*A*(x-d0)/sig^2.*exp(-1/2*(x-d0).^2/sig^2) .* ...
sin(2*pi*f*(x-d0)+phi)*pi*f - ...
4*A*exp(-1/2*(x-d0).^2/sig^2) .* ...
cos(2*pi*f*(x-d0)+phi)*pi^2*f^2;

rho2G(2,3,:) = -2*A*(x-d0)/sig^3.*exp(-1/2*(x-d0).^2/sig^2) .* ...
cos(2*pi*f*(x-d0)+phi)+A*(x-d0).^3/sig^5 .* ...
exp(-1/2*(x-d0).^2/sig^2).*cos(2*pi*f*(x-d0)+phi)+...
2*A*(x-d0).^2/sig^3.*exp(-1/2*(x-d0).^2/sig^2) .* ...
sin(2*pi*f*(x-d0)+phi)*pi*f;

rho2G(2,4,:) = -A*(x-d0)/sig^2.*exp(-1/2*(x-d0).^2/sig^2) .* ...
sin(2*pi*f*(x-d0)+phi) + ...
2*A*exp(-1/2*(x-d0).^2/sig^2) .* ...
cos(2*pi*f*(x-d0)+phi)*pi*f;

rho2G(3,1,:) = rho2G(1,3,:);
rho2G(3,2,:) = rho2G(2,3,:);
rho2G(3,3,:) = -3*A*(x-d0).^2/sig^4.*exp(-1/2*(x-d0).^2/sig^2).*...

cos(2*pi*f*(x-d0)+phi)+A*(x-d0).^4/sig^6 .* ...
exp(-1/2*(x-d0).^2/sig^2).*cos(2*pi*f*(x-d0)+phi);

rho2G(3,4,:) = -A*(x-d0).^2/sig^3.*exp(-1/2*(x-d0).^2/sig^2) .* ...
sin(2*pi*f*(x-d0)+phi);

rho2G(4,1,:) = rho2G(1,5,:);

57

rho2G(4,2,:) = rho2G(2,5,:);
rho2G(4,3,:) = rho2G(3,5,:);
rho2G(4,4,:) = -A*exp(-1/2*(x-d0).^2/sig^2).*cos(2*pi*f*(x-d0)+phi);

end

%% Start values
if length(start)~=6

error(’start values are needed! (form: [A,x0,W,f,phi,Ao])’);
else

oStart = [start(1:3),start(5:6)];
end

%% Optimisation (fitting)

lb = [0,-inf,-inf,-inf,-inf];
ub = [inf,inf,inf,inf,inf];

options = jklsqcurvefit(’defaults’);
options = optimset(options,’MaxFunEvals’,10000,’MaxIter’,10000);
options = optimset(options,’Jacobian’,’on’);

[pars, resnorm, residual, exitflag, output, lambda, J] = ...
jklsqcurvefit(@gabor, oStart, dataX, dataY,lb,ub,options);

%% Analysis
% (according to Numerical Recipies chapters 15.5 and 15.6)

% covariance matrix and confidence intervals
J = full(J);

% weighted with variance
lin = repmat(1./varY,size(J,2),1) .* J’ * J;
sq = sum(repmat(reshape((dataY-gabor(pars,dataX))./varY, ...

[1,1,length(dataY)]), [5,5,1]) ...
.* rho2G(pars, dataX), 3);

a = lin-sq;

58

C = inv(a); % covariance matrix

dChi = 4; % 95.4 confidence interval
conf = sqrt(dChi)*sqrt(diag(C))’; % confidence intervals

% residual variance
Vres = residual*residual’ / (length(dataY) - length(pars));
% VresNorm = Vres/(max(dataY)-min(dataY));
VresNorm = Vres/mean(varY);

% explained variation (R-square)
sst = sum((dataY-mean(dataY)).^2 ./ varY);
sse = sum((dataY-gabor(pars,dataX)).^2 ./ varY);
R2adj = 1 - sse*(length(dataY)-1) / (sst*(length(dataY)-length(pars)));

parsFull = [pars(1:3), start(4), pars(4:5)];

%% Plot data together with fitted Gabor

if (showFit)
h = figure;
clf
hold on;
plot(dataX,dataY,’o’,’MarkerEdgeColor’,’b’)
x = min(dataX):.1:max(dataX);
plot(x,gabor(pars, x),’:k’)
a = annotation(’textbox’,[0.15 0.9 0.15 0.09]);
set(a,’String’, {num2str(Vres), num2str(VresNorm)});
hold off;

end

end

gabor1.m

% [y,J] = gabor1(params, x)
% computes the values of the one dimensional gabor function given by
% params at positions x and also returns its Jacobian matrix wrt x

59

% version 1.0 {Sebastian Bitzer}
function [y,J] = gabor1(params, x)

A = params(1);
d0 = params(2);
sig = params(3);
f = params(4);
phi = params(5);
RMean = params(6);

y = RMean + A*exp(-(x-d0).^2/(2*sig^2)) .* cos(2*pi*f*(x-d0) + phi);
% y = max(0,y); % this should be on, but makes derivatives difficult

if (size(x,2) > 1)
x = x’;
end

J(:,1) = exp(-1/2*(x-d0).^2/sig^2).*cos(2*pi*f*(x-d0)+phi);
J(:,2) = A*(x-d0)/sig^2.*exp(-1/2*(x-d0).^2/sig^2) .* ...

cos(2*pi*f*(x-d0)+phi)+2*A*exp(-1/2*(x-d0).^2/sig^2) .* ...
sin(2*pi*f*(x-d0)+phi)*pi*f;

J(:,3) = A*(x-d0).^2/sig^3.*exp(-1/2*(x-d0).^2/sig^2).*cos(2*pi*f*(x-d0)+phi);
J(:,4) = -2*A*exp(-1/2*(x-d0).^2/sig^2).*sin(2*pi*f*(x-d0)+phi).*(pi*(x-d0));
J(:,5) = -A*exp(-1/2*(x-d0).^2/sig^2).*sin(2*pi*f*(x-d0)+phi);
J(:,6) = ones(length(x),1);

end

fitGabor2.m

% [pars,residual,R2,Vres,conf,exitflag] = ...
% fitGabor2(dataX, dataY, start, showFit, varY)
%
% tries to fit a two dimensional Gabor to the datapoints given as
% X and Y coordinate vectors in dataX and dataY with frequency and
% amplitude offset of the Gabor set static to the values given in
% start values (start)
% start must be a 9-element vector in the form:

60

% [x0,y0,Wp,Wq,phi,theta,A,f,Ao]
% if showFit is on (1), data is plotted together with the fit
% if varY is given the values are used as weights (1./varY) for the
% calculation of confidence intervals and R2
%
% output:
% pars - the fitted parameters of the gabor
% residual - value of the residual fit-RF
% R2 - R-square statistics (variation explained by fit in %)
% as no variances for the individual pixels of
% the RF are given this R-square is not weighted
% (see curve fitting toolbox online help:
% evaluating the goodness of fit)
% Vres - residual variance
% conf - confidence intervals for parameters - linear approximation
% exitflag - info whether optimization successful (<1, if no convergence)

% version 1.0 {Sebastian Bitzer}
function [pars_full,residual,R2adj,Vres,conf,exitflag] = ...

fitGabor2(dataX, dataY, start, showFit,varY)

dataX = dataX(:)’;
dataY = dataY(:)’;
if (nargin>4)

varY = varY(:)’;
else

varY = ones(size(dataY));
end

%% Gabor function to fit
% defined here in order to have easy access to calculated frequency

% see stand-alone gabor2.m for more info about this function
function fxy = gabor(params, xlong)

% x-y value transformation:
% it is assumed that y<=20, in terms of pixel patches this means that
% the patch has 20 rows, the top left pixel in the patch is defined
% as x=1, y=1, consequentially if the patch has 20 columns, the

61

% bottom right pixel will be x=20, y=20
% thus xlong=1:400 will produce 400 values for a pixel patch of
% width=20 and length=20 with the corresponding line and column
% numbers as x and y values
x = floor((xlong-1)./20)+1;
y = mod((xlong-1),20)+1;

x0 = params(1);
y0 = params(2);
Wp = params(3);
Wq = params(4);
phi = params(5);
theta = params(6);
gam = params(6);
A = params(7);
f = start(8); %params(9); % static
A0 = start(9); %params(10); % static

p = (x-x0)*cos(gam) + (y-y0)*sin(gam);
q = -(x-x0)*sin(gam) + (y-y0)*cos(gam);
u = (x-x0)*cos(theta) + (y-y0)*sin(theta);
fxy = A0 + A*exp(-(p.^2)/(2*Wp^2)).*exp(-(q.^2)/(2*Wq^2)) .* ...

cos(2*pi*f*u + phi);
end

%% Start values
if length(start)~=9

error(’start values are needed! (form: [x0,y0,Wp,Wq,phi,theta,A,f,Ao])’);
else

oStart = start(1:7);
end

%% Optimisation (fitting)
% lb = [];
% ub = [];
lb = [1,1,0,0,-inf,-inf,-inf];
ub = [20,20,25,25,inf,inf,inf];

62

options = jklsqcurvefit(’defaults’);
options = optimset(options,’MaxFunEvals’,2000,’MaxIter’,1000);
% options = optimset(options,’Jacobian’,’on’);

[pars, resnorm, residual, exitflag, output, lambda, J] = ...
jklsqcurvefit(@gabor, oStart, dataX, dataY,lb,ub,options);

if (exitflag == 0) % if not converged
oStart(5) = -oStart(5); % try with inverted phase
[pars, resnorm, residual, exitflag, output, lambda, J] = ...

jklsqcurvefit(@gabor, oStart, dataX, dataY,lb,ub,options);
end

pars_full = [pars, start(8), start(9)];

%% Analysis
% (according to Numerical Recipes chapters 15.5 and 15.6)

% covariance matrix and confidence intervals
J = full(J);

a = repmat(1./varY,size(J,2),1) .* J’ * J;

C = inv(a); % covariance matrix

dChi = 4; % 95.4 confidence interval
conf = sqrt(dChi)*sqrt(diag(C))’; % confidence intervals

% residual variance
Vres = residual*residual’ / (length(dataY) - length(pars));
% VresNorm = Vres/(max(dataY)-min(dataY));
VresNorm = Vres/mean(varY);

% explained variation (R-square)
sst = sum((dataY-mean(dataY)).^2 ./ varY);
sse = sum((dataY-gabor(pars,dataX)).^2 ./ varY);
R2adj = 1 - sse*(length(dataY)-1) / (sst*(length(dataY) - length(pars)));

%% Plot data together with fitted Gabor

63

if (showFit)
figure;
both = [RF, reshape(gabor(pars,dataX),20,20)];
imagesc(both), colormap(gray);

end

end

gabor2.m

% fxy = gabor2(params, xy)
%
% calculates values of a Gabor wavelet (2D-Gabor function) with parameters
% given in params at particular x-y coordinates
%
% xy determines the position, size and resolution of the desired section
% of the wavelet for x and y dimensions while coordinate system is defined
% with respect to row and column numbering of RF patches, thus point (1,1)
% is the upper left pixel of a RF when displayed with imagesc
% examples: xy = 1:20, yields a section of the wavelet corresponding to
% a RF in position, size and resolution
% xy = 1:0.1:20, reduced step size increases resolution in pixel
% xy = -20:40, displays a greater section of the wavelet with
% area 1:20 in the middle of the section
%
% output fxy is a long vector and has to be reshaped to be plotted properly
% e.g.: imagesc(reshape(gabor2(params,1:20),20,20))
% number of rows is always equal to number of columns
%
% see Anzai et al. 1999c (Neural Mechanisms for ... Receptive Field
% Position ...), appendix for further info about Gabor functions

% version 1.0 {Sebastian Bitzer}
function fxy = gabor2(params, xy)

xy = xy(:)’;
l = length(xy);
x = reshape(repmat(xy,l,1),1,l*l);
y = repmat(xy,1,l);

64

x0 = params(1); % center x
y0 = params(2); % center y
Wp = params(3); % width of minor gaussian
Wq = params(4); % width of majof gaussian
phi = params(5); % phase of sinusoid
theta = params(6); % orientation of sinusoid
gam = params(6); % orientation of gaussian
A = params(7); % amplitude
f = params(8); % frequency of sinusoid
Ao = params(9); % amplitude offset

p = (x-x0)*cos(gam) + (y-y0)*sin(gam);
q = -(x-x0)*sin(gam) + (y-y0)*cos(gam);
u = (x-x0)*cos(theta) + (y-y0)*sin(theta);

fxy = Ao + A*exp(-(p.^2)/(2*Wp^2)).*exp(-(q.^2)/(2*Wq^2)) .* ...
cos(2*pi*f*u + phi);

end

RF analysis

grating.m

% fxy = grating(params, xlong)
%
% takes x-y values within one vector, transforms these to seperate x and y
% values (see below) and calculates values of a grating with parameters
% given in params at these x-y values
%
% x-y value transformation:
% it is assumed that y<=20, in terms of pixel patches this means that
% the patch has 20 rows, the top left pixel in the patch is defined
% as x=1, y=1, consequentially if the patch has 20 columns, the
% bottom right pixel will be x=20, y=20
% thus xlong=1:400 will produce 400 values for a pixel patch of
% width=20 and length=20 with the corresponding line and column
% numbers as x and y values
%

65

% output fxy is a long vector and has to be reshaped to be plotted properly
% e.g.: imagesc(reshape(grating(params,1:400),20,20))

% version 1.0 {Sebastian Bitzer}
function fxy = grating(params, xlong)

xlong = xlong(:);

% transform 1D x to 2D x and y coordinates
x = floor((xlong-1)./20)+1;
y = mod((xlong-1),20)+1;

theta = params(1); % orientation
phi = params(2); % phase
A = params(3); % amplitude
f = params(4); % frequency
A0 = params(5); % amplitude offset
x0 = params(6); % center-x
y0 = params(7); % center-y

u = (x-x0)*cos(theta) + (y-y0)*sin(theta);
fxy = A0 + A*cos(2*pi*f*u + phi);

end

findOri.m

% oriBest = findOri(f, A, RFlong)
% determines orientation oriBest of RF given in one vector,
% [400,1]=size(RFlong), by correlating the RF with gratings with
% frequency f and amplitude A

% version 1.0 {Sebastian Bitzer}
function oriBest = findOri(f, A, RFlong)

corrBest = 0;
for o = -pi/2:0.05:pi/2 % for all orientations in 0.1 steps

pars = [o,0,A,f,0,10,10];
t = grating(pars, [1:400]’); % produce grating with that ori
corr = abs(t’*RFlong); % correlate RF and grating,

66

% if phase of grating is wrong,
% scalar product is negative

if (corr > corrBest) % if correlation is better
corrBest = corr; % store it
oriBest = o; % and remember orientation

end
end

end

fitGaborToRF.m

% [fits, residuals, R2, Vres, conf, exitflag] = ...
% fitGaborToRF(areaFile,cells)
%
% fits Gabor wavelets (2D-Gabor functions) to subunit RFs of simulated
% cells
% areaFile is the file name of a file containing the variable ’areas’
% from the simulation which will be loaded
% cells is a vector of cell numbers, cells with these numbers (IDs) have to
% exist in ’areas’
% heuristic start values for fitting are chosen
%
% output:
% fits - the fitted parameters of the gabor
% [ncells,9] = size(fits)
% residual - value of the residual fit-RF
% R2 - R-square statistics (variation explained by fit in %)
% as no variances for the individual pixels of
% the RF are given this R-square is not weighted
% (see curve fitting toolbox online help:
% evaluating the goodness of fit)
% Vres - residual variance
% conf - confidence intervals for parameters
% [ncells,7] = size(conf)
% exitflag - info whether optimization successful (<1, if no convergence)

% version 1.0 {Sebastian Bitzer}
function [fits, residuals, R2, Vres, conf, exitflag] =...

fitGaborToRF(areaFile,cells)

67

load(areaFile,’areas’);

ncells = length(cells);

residuals = zeros(ncells*4,20*20);
fits = zeros(ncells*4,9);
R2 = zeros(ncells*4,1);
Vres = zeros(ncells*4,1);
conf = zeros(ncells*4,7);
exitflag = zeros(ncells*4,1);

for i = 1:ncells % for cells
cell = cells(i)
[rf(1,:,:), rf(2,:,:), rf(3,:,:), rf(4,:,:)] = read_cell(cell,areas);
for sub = 1:4 % for each subunit

sub

dataX = [1:400]’;
RF = squeeze(rf(sub,:,:));
dataY = RF(:);

% START VALUES:
[y0,x0] = gravity_center(RF); % determine center of RF
t1 = round(y0); t2 = round(x0); % temporary variables
As = mean(mean(RF(t1-1:t1+1,t2-1:t2+1))); % 3x3 surrounding of center

scalar = pi/normpdf(0,0,30); % peak of the normal pdf
% should be pi later

% if surround of center is near 0, then center is presumably at
% edge of sinusoid, i.e. high phase shift; if As<0 gabor should be
% inverted by phase shift
phis = normpdf(As,0,30)*scalar+(As<0)*pi;
A = max(dataY); % amplitude = max of RF
[t1,f,t2] = get_ori_freq_fft(RF); % frequency
ori = findOri(f, As, dataY); % orientation of sinusoid
Wp = 8; % width of minor gaussian
Wq = 10; % width of major gaussian

68

Ao = 0; % amplitude offset

start = [x0,y0,Wp,Wq,phis,ori,A,f,Ao];

% FITTING
offset = (i-1)*4+sub;
if (mod(offset,2) == 0) % if right RF start with left RF values

[fitslast, residuals(offset,:), R2(offset), Vres(offset), ...
conf(offset,:), exitflag(offset)] = ...

fitGabor2(dataX,dataY,fitslast,0);
else % if left RF start with heuristic

[fitslast, residuals(offset,:), R2(offset), Vres(offset), ...
conf(offset,:), exitflag(offset)] = ...

fitGabor2(dataX,dataY,start,0);
end
fits(offset,:) = fitslast;

end
end

RFAnalysis.m

% [ori,ori90,f,phaseDifLR,phaseDif,phaseDifPx, posDif, posDifRel] = ...
% RFAnalysis(fits)
%
% calculates RF properties from parameters of RF fits, only difference to
% RFAnalysisSVD.m is computation of position disparity
%
% output:
% ori - RF orientation from 0 (horizontal) over pi/2 (vertical) to pi
% [ncells,nsubunits] = size(ori);
% ori90 - orientation wrt obliqueness from 0 (horizontal) to pi/2
% (vertical)
% [ncells,nsubunits] = size(ori90);
% f - RF spatial frequency
% [ncells,nsubunits] = size(f);
% phaseDifLR - phase difference between 1st and 2nd subunit RFs of one
% cell from 0 to 2pi
% [ncells,2] = size(phaseDifLR); (:,1)-left, (:,2)-right
% phaseDif - phase difference between left and right RFs of one

69

% subunit from 0 to 2pi
% [ncells,nsubunits] = size(phaseDif);
% phaseDifPx - phase difference between left and right RFs of one
% subunit in pixel
% [ncells,nsubunits] = size(phaseDifPx);
% posDif - position disparity between left and right RFs of one
% subunit in pixel as defined in Anzai et al. 1999 (pos-phase)
% [ncells,nsubunits] = size(posDif);
% posDifRel - relative position difference by subtracting 2nd from 1st
% subunit in pixel
% [ncells,1] = size(posDifRel);
%
% further info about disparity calculation in Sebastian Bitzer’s bachelor’s
% thesis

% version 1.0 {Sebastian Bitzer}
function [oriSin,ori90,fSub,phaseDifLR,phaseDifSub,phasePx, ...

posDifSub, posDif] = ...
RFAnalysis(fits)

%% Prolog
nfits = size(fits,1);
even = [1:floor(nfits/2)]*2;
odd = [1:ceil(nfits/2)]*2-1;
sub2 = [1:floor(nfits/4)]*2;
sub1 = [1:ceil(nfits/4)]*2-1;
first = find(mod(4:403,4) < 2);
second = setdiff(1:400,first);

%% Orientation
% note that these transformations are appropriate for orientation only,
% if you take the transformed orientations as parameters for gabor2, the
% RF may invert (because the whole gabor is rotated)

oriSin = normOri(fits(:,6));

function oriSub = normOri(oriFit)
ori = oriFit + pi/2; % make -pi/2 to 0 (horizontal)
ori = mod(ori,pi); % discard multiples of pi and transfrom

% negative to positive orientations

70

oriM = mean(reshape(ori,2,nfits/2))’; % calculate mean
% between right and left

t = find(oriM > min(ori(odd),ori(even))+pi/4); % if one ori at 0
% the other at pi

oriM(t) = ori(odd(t)); % take ori of left RF as mean

oriSub(:,1) = oriM(sub1);
oriSub(:,2) = oriM(sub2);

end

ori90 = oriSin; % only horizontal-vertical discrimination
big = find(oriSin>pi/2); % find orientation >90 degrees
ori90(big) = pi - ori90(big); % transform to corresp. orientation <90

%% Frequency
f = fits(:,8);
f = mean(reshape(f,2,nfits/2))’;
fSub(:,1) = f(sub1);
fSub(:,2) = f(sub2);

%% Phase
% note: a positive phase means peak of tuning curve is shifted to left

phase = fits(:,5);
phase = rem(phase,2*pi);
big = find(abs(phase)>pi);
phase(big) = phase(big) - sign(phase(big))*2*pi;

% first subunit phase - second subunit phase
phaseDif = phase(first)-phase(second);

big = find(abs(phaseDif)>pi);
phaseDif(big) = phaseDif(big) - sign(phaseDif(big))*2*pi;

phaseDifLR(:,1) = phaseDif(sub1);
phaseDifLR(:,2) = phaseDif(sub2);

% note: positive phase difference means peak of right RF is shifted to
% the left compared to left RF (far)

phaseDif = phase(even)-phase(odd);
big = find(abs(phaseDif)>pi);

71

phaseDif(big) = phaseDif(big) - sign(phaseDif(big))*2*pi;
phaseDifSub(:,1) = phaseDif(sub1);
phaseDifSub(:,2) = phaseDif(sub2);
phasePx = phaseDifSub/(2*pi) ./ fSub;

%% Position (with second subunit as reference cell)
posX = fits(:,1); % RF centres x-value
posY = fits(:,2); % RF centres y-value
fl = first(sub1); % first subunit left RF
fr = first(sub2); % first subunit right RF
sl = second(sub1); % second subunit left RF
sr = second(sub2); % second subunit right RF

posDifSub = zeros(nfits/4,2);

% following calculations based on consideration of lines running
% through RF centres with slope corresponding to RF orientation
% definition of a line: y = m*x + n
% assumption: left and right RFs have equal orientations
% subunit 1
m = tan(oriSin(:,1)+1e-10); % slope corresponding to ori
mo = tan(oriSin(:,1)+1e-10+pi/2); % slope perpendicular to ori
n1 = posY(fl) - m .*posX(fl); % line 1: left RF
n2 = posY(fl) - mo.*posX(fl); % line 2: perpendicular to RFs,

% intersecting with line 1 at
% left RF centre

n3 = posY(fr) - m .*posX(fr); % line 3: right RF
x = (n2-n3)./(m-mo); % intersection line 2 and 3
y = m.*x+n3; % y-value of intersection

% pos disp is length of vector from left RF centre to point of intersection
for i=1:100

posDifSub(i,1) = norm([x(i),y(i)]-[posX(fl(i)),posY(fl(i))]);
end
% negative, if line 1 is left from line 3
posDifSub(:,1) = sign(posX(fl)-x).*posDifSub(:,1);

% subunit 2
m = tan(oriSin(:,2)+1e-10);

72

mo = tan(oriSin(:,2)+1e-10+pi/2);
n1 = posY(sl) - m .*posX(sl);
n2 = posY(sl) - mo.*posX(sl);
n3 = posY(sr) - m .*posX(sr);
x = (n2-n3)./(m-mo);
y = m.*x+n3;
for i=1:100

posDifSub(i,2) = norm([x(i),y(i)]-[posX(sl(i)),posY(sl(i))]);
end
posDifSub(:,2) = sign(posX(sl)-x).*posDifSub(:,2);

% this is equal to the computation of relative position disparity as
% given in Anzai et al. 1999 (position vs. phase), which would have
% been simpler to do, but in this way I have absolute position
% disparities, too
% second subunit assumed to have posDif=0
posDif = posDifSub(:,1)-posDifSub(:,2);

end

Interaction profiles

iProfile.m

% [iPrf,marg] = iProfile(fits,cells,res)
%
% calculates binocular interaction profiles with given resolution res from
% RF fits for given cells
%
% profile for one monocular subunit RF is defined as values along the line
% perpendicular to RF orientation through RF centre, x-axis of the
% resulting 1D-profile is defined wrt RF centre, for the binocular
% interaction profiles values at different x-coordinates in left and right
% monocular profiles are combined and further processed according to the
% cell model
%
% output:
% iPrf - binocular interaction profiles, columns correspond to differnt
% positions in left RFs, rows correspond to different position in
% right RFs, third dimension for different cells
% marg - range of positions (x-coordinates) used in iPrf

73

% => iPrf(1,:) represents position -marg in RF space
% iPrf(end,:) represents position marg in RF space
%
% further info in Sebastian Bitzer’s bachelor’s thesis and in Anzai et al.’s
% 1999 series of papers to disparity
%
% for how to display interaction profiles analogous to Anzai et al. see
% iPrfFig.m, alternatively imagesc(imrotate(iPrf,45)) will also do, but is
% not as nice

% version 1.0 {Sebastian Bitzer}
function [iPrf,marg] = iProfile(fits,cells,res)

dev = 2.2; % allowed deviation from center [10.5,10.5]
% all higher frequency RFs lie within <= 2.2

marg = 10.5-dev-1; % margin (largest distance from center in order
% to stay in 20x20 patch given possible deviation)

step = 2*marg/res; % step size in order to have res+1 steps
nsteps = res+1;

iPrf = zeros(nsteps,nsteps,length(cells));
iPrfMatch = zeros(nsteps,nsteps);
iPrfMisMatch = zeros(nsteps,nsteps);

for i=1:length(cells)

% c = [10.5;10.5];

% subunit 1 left
c = fits(cells(i)*4-3,1:2)’;
if (max(abs(c-[10.5;10.5])) > dev)

c = [10.5;10.5];
end
vDist = calcLine(-marg:step:marg, fits(cells(i)*4-3,6));
params = fits(cells(i)*4-3,:);
subL(1,:) = gabor1Prf(params, repmat(c,1,size(vDist,2))-vDist);

% subunit 2 left
c = fits(cells(i)*4-1,1:2)’;
if (max(abs(c-[10.5;10.5])) > dev)

74

c = [10.5;10.5];
end
vDist = calcLine(-marg:step:marg, fits(cells(i)*4-1,6));
params = fits(cells(i)*4-1,:);
subL(2,:) = gabor1Prf(params, repmat(c,1,size(vDist,2))-vDist);

% subunit 1 right
c = fits(cells(i)*4-2,1:2)’;
if (max(abs(c-[10.5;10.5])) > dev)

c = [10.5;10.5];
end
vDist = calcLine(-marg:step:marg, fits(cells(i)*4-2,6));
params = fits(cells(i)*4-2,:);
subR(1,:) = gabor1Prf(params, repmat(c,1,size(vDist,2))-vDist);

% subunit 2 right
c = fits(cells(i)*4,1:2)’;
if (max(abs(c-[10.5;10.5])) > dev)

c = [10.5;10.5];
end
vDist = calcLine(-marg:step:marg, fits(cells(i)*4,6));
params = fits(cells(i)*4,:);
subR(2,:) = gabor1Prf(params, repmat(c,1,size(vDist,2))-vDist);

for j = 1:size(vDist,2)
iPrfMatch(j,:) = sqrt((subL(1,j)+subR(1,:)).^2 + ...

(subL(2,j)+subR(2,:)).^2);
iPrfMisMatch(j,:) = sqrt((subL(1,j)-subR(1,:)).^2 + ...

(subL(2,j)-subR(2,:)).^2);
end
iPrf(:,:,i) = iPrfMatch - iPrfMisMatch;

end

function fxy = gabor1Prf(params,xy)
x0 = params(1); % center x
y0 = params(2); % center y
Wp = params(3); % width of minor gaussian
Wq = params(4); % width of majof gaussian
phi = params(5); % phase of sinusoid
theta = params(6); % orientation of sinusoid

75

gam = params(6); % orientation of gaussian
A = params(7); % amplitude
f = params(8); % frequency of sinusoid
A0 = params(9); % amplitude offset

x = xy(1,:);
y = xy(2,:);

p = (x-x0)*cos(gam) + (y-y0)*sin(gam);
u = (x-x0)*cos(theta) + (y-y0)*sin(theta);

fxy = A0 + A*exp(-(p.^2)/(2*Wp^2)) .* ...
cos(2*pi*f*u + phi);

end

% calculate vector pointing "dist" units in the direction of "slope"
% (used to compute datapoints on the line orthogonal to orientation)
% it is important to understand that slope assumes an increase for
% higher values of y, but in this context of images and rows a
% bigger y value means to go down
function vDist = calcLine(dist, ori)

o = mod(ori+pi/2,pi); % normalise and orthogonalise
slope = -tan(o+1e-10+pi/2); % slope of line orthogonal to

% orientation ori in rad
v = [1,slope]; % make a vector from slope
v = v/norm(v); % normalise the slope vector
vDist = v’*dist(:)’; % scale by the given distance
vDist(1,:) = -vDist(1,:); % reflect about x-axis to correct

% for interpretation of y and make
% negative dist left of center

end
end

SVDAnalysis.m

% [w,fitsSVD,R2SVD,exitSVD] = SVDanalysis(iPrf,marg,RFfits,cells,sav)
% decomposes interaction profile "iPrf" of cells given in "cells" with
% singular value decomposition (SVD) and fit resulting left and right
% parts of the first two components with a 1D Gabor in order to obtain
% fitted parameters, "marg" is the margin used during creation of "iPrf"

76

% and defines the x values for fitting, "RFfits" are used as heuristic for
% fitting and to fill corresponding slots in output "fits", right profiles
% get fitted parameters of left profiles as starting values, in any case
% Gabor is first fitted with frequency held at frequency of RFfits, if this
% fit accounts for less than 97% of the data variance, Gabor is refitted
% with free frequency, fit with greater R2 is taken
% if sav is on (1) results will also be stored in a file SVDAnalysis<date>.mat
%
% outputs:
% w - matrix containing weights for each component of each cell
% [ncomponents,ncells] = size(w)
% fitsSVD - matrix containing fitted parameters for first and second
% components in the format of RFfits, orientation is inserted from
% RFfits, fields of second gaussian are left zero, can be used
% with RFAnalysisSVD.m
% [ncells*4,9] = size(fitsSVD)
% R2SVD - R-square of Gabor fits
% [ncells*4,1] = size(R2SVD)
% exitSVD - exitflags of optimisation procedure (<1 if not converged)
% [ncells*4,1] = size(exitSVD)
%
% version 1.0 {Sebastian Bitzer}
function [w,fitsSVD,R2SVD,exitSVD] = SVDanalysis(iPrf,marg,RFfits,cells,sav)

[nsteps,nsteps,ncellsIn] = size(iPrf);
ncells = length(cells);
L = zeros(nsteps);
R = zeros(nsteps);
W = zeros(nsteps);
w = zeros(nsteps,ncells);
R2SVD = zeros(ncells*4,1);
pars = zeros(ncells*4,6);

% conf = zeros(ncells*4,6); % different in fitGabor1 and fitGabor1f
exitSVD = zeros(ncells*4,1);
fitsSVD = zeros(ncells*4,9);

step = 2*marg/(nsteps-1);
x = -marg:step:marg;

for i = 1:ncells

77

cells(i),

%% SVD
[L,W,R] = svd(squeeze(iPrf(:,:,cells(i))));
w(:,i) = diag(W); % singular values (weights)
L12 = L(:,[1,2]); % left first and second components only
R12 = R(:,[1,2]); % right first and second components only

% % to show first component:
%t = zeros(nsteps), t(1,1) = W(1,1);
%figure, imagesc(imrotate(L*t*R’,45))
% % alternatively:
%figure, imagesc(imrotate(L12(:,1)*w(1)*R12(:,1)’,45))

%% fit first component left
y = L12(:,1);
start = [max(y)*2, 0, marg, RFfits(cells(i)*4-3,8), 0, 0];
off = i*4-3;
[R2SVD(off),exitSVD(off),pars(off,:)] = fitSVD(start);

%% fit first component right
y = R12(:,1);

% start = [max(y)*2, 0, marg, RFfits(cells(i)*4-3,8), 0, 0];
start = pars(i*4-3,:);
start(1) = max(y)*2;
off = i*4-2;
[R2SVD(off),exitSVD(off),pars(off,:)] = fitSVD(start);

%% fit second component left
y = L12(:,2);
start = [max(y)*2, 0, marg, RFfits(cells(i)*4-3,8), 0, 0];
off = i*4-1;
[R2SVD(off),exitSVD(off),pars(off,:)] = fitSVD(start);

%% fit second component right
y = R12(:,2);

% start = [max(y)*2, 0, marg, RFfits(cells(i)*4-3,8), 0, 0];
start = pars(i*4-1,:);
start(1) = max(y)*2;
off = i*4;

78

[R2SVD(off),exitSVD(off),pars(off,:)] = fitSVD(start);
end

%% fitting function
function [R2,exit,pars] = fitSVD(strt)

R2a = 0; exita = 0;
[parsf,res,R2f,Vres,conf,exitf] = fitGabor1f(x, y, strt, 0);
if (exitf==0 | R2f < 0.97)

[parsa,res,R2a,Vres,conf,exita] = fitGabor1(x, y, strt, 0);
end
if (R2f > R2a)

R2 = R2f;
exit = exitf;
pars = parsf;

else
R2 = R2a;
exit = exita;
pars = parsa;

end
end

%% collecting fitted parameters
% this format is only used for compatibility to RFAnalysis.m
% notice the empty values of the second gaussian

RFindex = repmat(cells,4,1) * 4 - repmat([3:-1:0]’,1,ncells);
fitsSVD = [pars(:,2),... % envelope position

zeros(ncells*4,1),... % env pos y (not applicable)
pars(:,3),... % envelope width
zeros(ncells*4,1),... % env width y (not applicable)
pars(:,5),... % phase
RFfits(RFindex(:),6),... % orientation
pars(:,1),... % amplitude
pars(:,4),... % frequency
pars(:,6)]; % amplitude offset

if (nargin > 4 & sav == 1)
dateStr = strcat(datestr(now,’dd’),datestr(now,’mm’));
save(strcat(’SVDAnalysis’,dateStr,’.mat’),’*SVD’,’w’,’marg’,’iPrf’,’cells’)

end
end

79

RFAnalysisSVD.m

% [ori,ori90,f,phaseDifLR,phaseDif,phaseDifPx, posDif, posDifRel] = ...
% RFAnalysisSVD(fits)
%
% calculates RF properties from parameters of RF fits, only difference to
% RFAnalysis.m is computation of position disparity, therefore only this is
% printed here

% version 1.0 {Sebastian Bitzer}
function [oriSin,ori90,fSub,phaseDifLR,phaseDifSub,phasePx, ...

posDifSub, posDif] = ...
RFAnalysisSVD(fits)

...
calculation of oriSin, ori90, fSub,
phaseDifLR, phaseDifSub, phasePx omitted
see RFAnalysis.m
...

%% Position (with second subunit as reference cell)
% left-right: left shift of right is positive (far)
posDif = fits(odd,1) - fits(even,1);
posDifSub(:,1) = posDif(sub1);
posDifSub(:,2) = posDif(sub2);
% second subunit assumed to have posDif=0
posDif = posDifSub(:,1)-posDifSub(:,2);

end

RDS

genRDS.m

% RDS = genRDS(RDSsize, dots, dens)
%
% generate Random Dot Stimuli of size "RDSsize" [row,col]
% with density "dens" of black and white dots in %/100 of image
% and size of dots in "dots" [row,col], dots are allowed
% to overlap
% e.g. genRDS([20,20], [1,1], 0.5)
%

80

% output:
% RDS - RDS with requested properties

% version 1.0 {Sebastian Bitzer}
function RDS = genRDS(RDSsize, dots, dens)

RDS_big = zeros(RDSsize(1)+2*dots(1),RDSsize(2)+2*dots(2));

nPix = prod(RDSsize);

nDots = floor(nPix*dens/prod(dots));

if (nDots < 2)
error(strcat(’density or dot size too high for size of RDS ’, ...

’(dots do not fit into figure with given density)’);
end

dotPos = [floor(rand(nDots, 1)*(RDSsize(1)-0.01))+1, ...
floor(rand(nDots, 1)*(RDSsize(2)-0.01))+1];

for i=1:nDots
offset = [dotPos(i,1)+1, dotPos(i,2)+1];
RDS_big(offset(1):offset(1)+dots(1)-1, offset(2):offset(2)+dots(2)-1) = ...

mod(i,2)*-1 + mod(i+1,2);
end

RDS = RDS_big(1+dots(1):end-dots(1), 1+dots(2):end-dots(2));

% when dots have values -1 and 1, then mean is already 0
% (except there are unequal numbers of black and white dots: covered dots)
% if genRDS used with RDStoActSingle mean normalisation should be done there
% RDS = RDS - mean(mean(RDS));

RDStoActSingle.m

% [cellAct,m,V] = RDStoActSingle(cell, areas, iter, dotDens, mode, varargin)
%
% calculates activity of a cell to random-dot stereograms
% "cell" is a cell number (id) which is used to get corresponding cell
% properties from "areas", "iter" determines the number of used RDS with

81

% "dotDens" dot densitiy and further properties dependent on "mode":
% ’disp’ : RDS with disparity
% varargin: first - disparity in pixels of the RDS patch
% second - flag whether disparity should be
% horizontal (0) or orthogonal to preferred
% orientation (1)
% third - "ori" from RFAnalysis, is used to produce
% a disparity which is always orthogonal to
% the preferred orientation of the cell
% ’mono’ : RDS in one eye, in the other grey background
% varargin: first - ’left’ if RDS in left eye, else right eye
% ’uncorr’: uncorrelated RDS in both eyes
% ’blank’ : blank patch to both eyes (patch filled with 1)
%
% output:
% cellAct - calculated activities to different RDS with given properties
% [1,iter] = size(cellAct)
% m - mean of cellAct
% V - variance of cellAct
%
% example:
% [cellAct,m,V] = RDStoActSingle(1, areas, 1000, 0.25, ’disp’, -1, 1, ori)
%
% for further info esp. about definition of disparity see
% Sebastian Bitzer’s bachelor’s thesis

% version 1.0 {Sebastian Bitzer}
function [cellAct,m,V] = RDStoActSingle(cell, areas, iter, dotDens, ...

mode, varargin)

[wLs1, wRs1, wLs2, wRs2] = read_cell(cell, areas, []);
[m,n] = size(wLs1);
norm = areas{2}.theNorm;
nSub = areas{2}.nrSubunits;

cellAct = zeros(1,iter);

w(:,1) = [wLs1(:); wRs1(:)]; % subunit 1
w(:,2) = [wLs2(:); wRs2(:)]; % subunit 2

82

if (strcmp(mode,’disp’))
disp = varargin{1};
if (abs(disp) > n || abs(disp) > m)

warning(strcat(’disparity is not allowed to exceed the ’, ...
’dimensions of the image: switching to mode "uncorr"’)

mode = ’uncorr’;
end

if (varargin{2} == 1)
ori = varargin{3}(cell,1); % orientation of 1st subunit

% (should be equal to 2nd)
slope = -tan(ori+1e-10+pi/2); % slope of line orthogonal to

% orientation ori in rad
oDisp = calcOriDisp(disp, slope);

else
oDisp = [0,disp];

end
end

for i = 1:iter % for iter different RDS

switch mode
case ’disp’

RDS = genRDS([m,n].*3, [1,1], dotDens); % generate big RDS

% RDS for left and right RFs (made from big RDS)
rRDS = reshape(RDS(m+1:2*m, n+1:2*n), 1, m*n);
rRDS = rRDS - mean(rRDS);
lRDS = reshape(RDS(m+1+oDisp(1):2*m+oDisp(1), ...

n+1-oDisp(2):2*n-oDisp(2)), 1, m*n);
lRDS = lRDS - mean(lRDS);

case ’mono’
if (strcmp(varargin{1}, ’left’))

lRDS = reshape(genRDS([m,n], [1,1], dotDens),1,m*n);
lRDS = lRDS - mean(lRDS);
rRDS = ones(1,m*n);

else
lRDS = ones(1,m*n);
rRDS = reshape(genRDS([m,n], [1,1], dotDens),1,m*n);
rRDS = rRDS - mean(rRDS);

83

end
case ’uncorr’

lRDS = reshape(genRDS([m,n], [1,1], dotDens),1,m*n);
lRDS = lRDS - mean(lRDS);
rRDS = reshape(genRDS([m,n], [1,1], dotDens),1,m*n);
rRDS = rRDS - mean(rRDS);

case ’blank’
lRDS = ones(1,m*n);
rRDS = ones(1,m*n);

otherwise
error(strcat(’unknown mode - choose between ’, ...

’"disp", "mono", "uncorr" and "blank"’)
end

I = [lRDS, rRDS]; % input: combined left + right RDS

subAct = I*w; % activities of subunits

cellAct(i) = sum(subAct.^norm).^(1/norm); % activity of cell
end

m = mean(cellAct); % mean of cells response (over RDS)
V = var(cellAct); % variance of cells respsonse

% calculate oriented disparity offsets
% (disparity orthogonal to preferred orientation of cell)
function oDisp = calcOriDisp(disp, slope)

v = [slope,1]; % make a vector from slope
v = v/norm(v); % normalise the slope vector
oDisp = round(v*disp); % scale by the given disparity

RDStoAct.m

% [act,m,V] = RDStoAct(areas, iter, dotDens, mode, varargin)
%
% calculates activity of all cells in "areas" to random-dot stereograms,
% thereto calls RDStoActSingle.m
% "iter" determines the number of used RDS with "dotDens" dot densitiy and

84

% further properties dependent on "mode":
% ’disp’ : RDS with disparity
% varargin: first - disparity in pixels of the RDS patch
% second - flag whether disparity should be
% horizontal (0) or orthogonal to preferred
% orientation (1)
% third - "ori" from RFAnalysis, is used to produce
% a disparity which is always orthogonal to
% the preferred orientation of the cell
% ’mono’ : RDS in one eye, in the other grey background
% varargin: first - ’left’ if RDS in left eye, else right eye
% ’uncorr’: uncorrelated RDS in both eyes
% ’blank’ : blank patch to both eyes (patch filled with 1)
%
% output:
% act - calculated activities to different RDS with given properties
% [iter,ncells] = size(cellAct)
% m - mean of cellAct
% [1,ncells] = size(m)
% V - variance of cellAct
% [1,ncells] = size(V)
%
% example:
% [act,m,V] = RDStoAct(areas, 1000, 0.25, ’disp’, -1, 1, ori)
%
% for further info esp. about definition of disparity see
% Sebastian Bitzer’s bachelor’s thesis

% version 1.0 {Sebastian Bitzer}
function [act,m,V] = RDStoAct(areas, iter, dotDens, mode, varargin)

cellAct = zeros(1,iter);
act = zeros(iter,100);
m = zeros(1,100);
V = zeros(1,100);

for j = 1:areas{2}.nrNeurons % for every neuron
% get activity

[cellAct, m(j), V(j)] = ...
RDStoActSingle(j, areas, iter, dotDens, mode, varargin{:});

85

act(:,j) = cellAct’; % and store it

end

calcActs.m

% script for computing activities of cells to RDS as well as
% MUratio, DDI and ODI
%
% needed variables in workspace:
% areas - containing the RFs
% ori - orientation of RFs [ncells,nsubunits]=size(ori)
%
% saves all activities in file with name RDSAct<date><options>.mat

% version 1.0 {Sebastian Bitzer}

iter = 1000; % number of iterations
orthFlag = 0; % use disparity orthogonal to preferred orientation (1)

% or horizontal disparity (0)
dispRange = 20; % range of disparities over which should be sampled

% (-dispRange:dispRange)
dotDens = 0.25; % average dot density in RDS in %

% 0.25 for Prince et al, 0.5 for Read and Cumming

ncells = areas{2}.nrNeurons;
ndisps = dispRange*2+1;

%% producing activities to RDS stimuli

’mono left’
[monoLAct, monoLV] = RDStoAct(areas, iter, dotDens, ’mono’,’left’);

’mono right’
[monoRAct, monoRV] = RDStoAct(areas, iter, dotDens, ’mono’,’right’);

’uncorrelated’
[uncorrAct, uncorrV] = RDStoAct(areas, iter, dotDens, ’uncorr’);

’blank’
[blankAct, blankV] = RDStoAct(areas, 1 , dotDens, ’blank’);

86

monoLActM = mean(monoLAct); % monocular left activities (mean)
monoRActM = mean(monoRAct); % monocular right activities (mean)
uncorrActM = mean(uncorrAct); % activities to uncorrelated RDS
blankActM = mean(blankAct); % activities to blank stimuli
domMonoAct = max([monoLActM; monoRActM]);

%% producing activities to RDS stimuli with disparity

’disparity:’
dispAct = zeros(ndisps,iter,ncells); % raw activities
dispActM = zeros(ndisps,ncells); % mean activities
dispV = zeros(ndisps,ncells); % variance of activities
for i = -dispRange:dispRange

i
dOffset = i+dispRange+1;
if orthFlag

[dispAct(dOffset,:,:), dispActM(dOffset,:), dispV(dOffset,:)] = ...
RDStoAct(areas, iter, dotDens, ’disp’, i, orthFlag, ori);

else
[dispAct(dOffset,:,:), dispActM(dOffset,:), dispV(dOffset,:)] = ...

RDStoAct(areas, iter, dotDens, ’disp’, i, orthFlag);
end

end

%% ratio of dominant monocular to uncorrelated response

MUratio = domMonoAct./uncorrActM;

%% disparity discrimination index (DDI)

[m,n] = size(dispActM);
Rmax = max(dispActM);
Rmin = min(dispActM);
SSE = sum(squeeze(sum((dispAct - ...

repmat(reshape(dispActM,m,1,n),[1,iter,1])).^2)));

87

RMS = sqrt(SSE/(iter-m));

DDI = (Rmax - Rmin) ./ ((Rmax - Rmin) + 2*RMS);

%% ocular dominance index (ODI)

ODI = monoLActM./(monoLActM + monoRActM);

%% save variables

dateStr = strcat(datestr(now,’dd’),datestr(now,’mm’));
save(strcat(’RDSAct’,dateStr,’i’,num2str(iter),’o’,num2str(orthFlag),’d’,...

num2str(dispRange),’dD’,num2str(dotDens),’.mat’), ...
’iter’, ’orthFlag’, ’*Act’, ’*ActM’, ’dispV’, ’MUratio’, ’RMS’, ...
’Rmax’, ’Rmin’, ’DDI’, ’ODI’,’dotDens’,’dispRange’);

fitRDS.m

% [parsRDS, R2RDS, confRDS, goodCellsRDS, exitflagRDS] = fitRDS(actFile)
%
% fits 1D-Gabor functions to disparity tuning data contained in actFile
% from which it loads dispActM and dispV
% heuristic start values for fitting are chosen
%
% output:
% parsRDS - the fitted parameters of the gabor
% R2RDS - R-square statistics (variation explained by fit in %)
% as no variances for the individual pixels of
% the RF are given this R-square is not weighted
% (see curve fitting toolbox online help: evaluating the
% goodness of fit)
% confRDS - confidence intervals for parameters
% goodCellsRDS - cells with R2>0.75 and no complex confidence intervals
% exitflagRDS - info whether optimization successful (<1, if no convergence)
%
% additionally saves all fits in file with name from actFile in which
% "RDSAct" is replaced with "RDSFits"

88

% version 1.0 {Sebastian Bitzer}
function [pars, R2, conf, goodCells, exitflag] = fitRDS(actFile)

load(actFile,’dispActM’,’dispV’);

[nData, cells] = size(dispActM);
nPar = 6;

pars = zeros(cells,nPar); % parameters for Gabor
res = zeros(cells,nData); % residuals
R2 = zeros(1,cells); % R-square (explained variation)
C = zeros(nPar-1,nPar-1,cells);% covariance matrix
varres = zeros(1,cells); % residual variance
conf = zeros(cells,nPar-1); % confidence intervals

% (one less because frequency via FFT)
exitflag = zeros(1,cells);

%% fitting
dataX = -20:20;

for cell=1:cells
cell

dataY = dispActM(:,cell)’;

% START VALUES:
% amplitude
A = std(dataY)*2;

% frequency
resol = 1000; % resolution
y = [1:resol]./resol;
Y = fft(hann(size(dataX,2))’.*(dataY-mean(dataY)),resol);
Pyy = Y.*conj(Y);
Df = y(find(Pyy(1:resol/2) == max(Pyy(1:resol/2))));

% amplitude offset
if (dataX==[-20:20])

Ao = mean([dataY(1),dataY(end)]);

89

else
Ao = mean(dataY);

end

start = [A,0,5,Df,0,Ao];

% FITTING
[pars(cell,:), res(cell,:), R2(cell), varres(cell), ...
conf(cell,:), exitflag(cell)] = ...

fitGabor1f(dataX, dataY, start, 0, dispV(:,cell));
end

%% saving

% find cells with 75% variance explained and sampled disparity
% confidence interval for gabor phase non-complex
goodCells = find(R2’>=0.75 & abs(imag(conf(:,2)))==0);

parsRDS = pars;
R2RDS = R2;
confRDS = conf;
goodCellsRDS = goodCells;
exitflagRDS = exitflag;

if (length(strfind(actFile,’RDSAct’)) == 0)
dateStr = strcat(datestr(now,’dd’),datestr(now,’mm’));
fname = strcat(’RDSFits’,dateStr,’.mat’);
warning(’\nno standard actFile-string, saving in: %s’,fname);
save(fname, ’*RDS’);

else
save(strrep(actFile,’RDSAct’,’RDSFits’), ’*RDS’);

end

Displaying

showRFAnalysis.m

% script containing collection of diagrams to visualise RFAnalysis data
% analogous to Anzai et al. (1999)

90

% it is not recommended to run this script in the command line since
% several figure windows will open simultaneously, use cell mode instead to
% run selected cells containing one diagram each
% cell "prolog" needs to be run once before diagrams can be constructed
% for final diagrams which also display data from Anzai see directory figs

% version 1.0 {Sebastian Bitzer}

%% prolog for SVDAnalysis data
% has different calculation of position disparity
[ori,ori90,f,phaseDifLR,phaseDif,phaseDifPx, posDif, posDifRel] = ...

RFAnalysisSVD(fitsSVD);
good = find(abs(posDif(:,1)) < 10);
p = 20; % patch size

%% prolog for comparison with simple cells
[ori,ori90,f,phaseDifLR,phaseDif,phaseDifPx, posDif, posDifRel] = ...

RFAnalysis(fits);
good = find(abs(posDif(:,1)) < 10);
p = 20; % patch size

%% weights of SVD
% works only when w of SVDAnalysis is in workspace
figure,
hold on

tmp = cumsum(w./repmat(sum(w),101,1));
m = mean(tmp’);
s = std(tmp’);
h = errorbar(m(1:16)*100,s(1:16)*100,’-^k’);
set(h, ’MarkerFaceColor’,[0,0,0.8],’MarkerSize’,8);

tmp = w./repmat(sum(w),101,1);
m = mean(tmp’);
s = std(tmp’);
h = errorbar(m(1:16)*100,s(1:16)*100,’-ok’);
set(h, ’MarkerFaceColor’,[0,0.8,0],’MarkerSize’,8);

axis([0.5,16,0,100]);

91

set(gca,’XTick’,[1:16],’XTickLabelMode’,’manual’, ...
’XTickLabel’,{’1’,’’,’’,’4’,’’,’’,’7’,’’,’’,’10’,’’,’’,’13’,’’,’’,’16’});

set(gca,’YTick’,[0,25,50,75,100]);
set(gca,’PlotBoxAspectRatio’,[1.5,1,1]);
grid on
legend(’cumulative’,’individual component’,’Location’,’East’)
xlabel(’component number’,’FontSize’,14)
ylabel(’mean percentage of total variance’,’FontSize’,14)
hold off
clear m s tmp

%% histograms
n = 8; % 2*n+1 is number of bins
figure, set(gcf,’Position’,[200 10 385 685]);
subplot(3,1,1),

hist(phaseDif(good,1),2*n+1);
set(get(gca,’Children’),’FaceColor’,[.7,.9,.7])
set(gca,’XLim’,[-3.5,3.5])
set(gca,’XTick’,[-pi,-2/3*pi,-pi/3,0,pi/3,2/3*pi,pi], ...

’XTickLabelMode’,’manual’, ...
’XTickLabel’,[-180,-120,-60,0,60,120,180]);

xlabel(’phase disparity (deg PA)’,’FontSize’,14);
text(0.3,1.2,’Simulation’,’FontSize’,16,’Units’,’normalized’);
box off

subplot(3,1,2),
hist(phaseDifPx(good,1),[-n:n]*20/n);

set(gca,’XLim’,[-20,20])
set(get(gca,’Children’),’FaceColor’,[.7,.9,.7])
xlabel(’phase disparity (px)’,’FontSize’,14);
ylabel(’Number of cells’,’FontSize’,16)

text(0.76,0.9,strcat(’$\sigma=\;$’,num2str(std(phaseDifPx(good,1)),3)),...
’Units’,’normalized’,’Interpreter’,’latex’,’FontSize’,12);

box off
subplot(3,1,3),
hist(posDifRel(good),[-n:n]*20/n);

set(gca,’XLim’,[-20,20])
set(get(gca,’Children’),’FaceColor’,[.7,.9,.7])

xlabel(’position disparity (px)’,’FontSize’,14);
text(0.76,0.9,strcat(’$\sigma=\;$’,num2str(std(posDifRel(good)),3)),...

92

’Units’,’normalized’,’Interpreter’,’latex’,’FontSize’,12);
hold on
[n2,xout] = hist(posDif(good,1),[-n:n]*20/n);
bar(xout,n2,0.3,’w’);
text(0.74,0.78,strcat(’$\sigma_1 =\; $’,num2str(std(posDif(good,1)),3)),...

’Units’,’normalized’,’Interpreter’,’latex’,’FontSize’,12);
box off

clear n n2 xout

%% phase vs. position
figure,
plot(phaseDifPx(good,1),posDif(good,1),’ok’);
x = get(gca,’XLim’);
set(gca,’YLim’,x);
line(x,[0,0],’Color’,’k’)
line([0,0],x,’Color’,’k’)

ylabel(’position Disparity (px)’,’FontSize’,14);
xlabel(’phase Disparity (px)’,’FontSize’,14);
title(’1st subunit’,’FontSize’,16);
grid on;
[r,P] = corrcoef(phaseDifPx(good,1),posDif(good,1))
fr = @(x1) r(1,2)*x1;
r = fr(phaseDifPx(good,1));
sst = sum((posDif(good,1)-mean(posDif(good,1))).^2);
sse = sum((posDif(good,1)-r).^2);
R2r = 1 - sse*(length(good)-1) / (sst*(length(good) - 1))

clear r P x fr sst sse R2r

%% orientation vs. phase
figure,
plot(ori90(good,1)/pi,abs(phaseDif(good,1))/pi,’ok’);
set(gca,’XTick’,[0,1/12,2/12,1/4,4/12,5/12,1/2], ...

’XTickLabelMode’,’manual’, ...
’XTickLabel’,[0,15,30,45,60,75,90]);

set(gca,’YTick’,[0,1/4,1/2,3/4,1], ...

93

’YTickLabelMode’,’manual’, ...
’YTickLabel’,[0,45,90,135,180])

xlabel(’RF orientation (deg)’,’FontSize’,14);
ylabel(’|phase disparity| (deg PA)’,’FontSize’,14);
title(’1st subunit’,’FontSize’,16);
grid on;

range = 20; % ranges for analysis of variance in degree

% standard deviation of phases for cells with horizontal orientations
% in parenthesis: std+2*standard error obtained from bootstrap estimate
small = find(ori90(:,1)<=range/90*pi/2);
small = intersect(small,good);
F = var(abs(phaseDif(small,1)));
smStd = std(abs(phaseDif(small,1)))/pi*180;
smPh = abs(phaseDif(small,1))/pi*180;
smBootSE = std(bootstrp(1000,’std’,smPh));
text(0.02,1.05,strcat(’\sigma =’,num2str(smStd,4),...

’(’,num2str(smBootSE*2+smStd,4),’)’),...
’Units’,’normalized’)

% standard deviation of phases for cells with vertical orientations
% in parenthesis: std-2*standard error obtained from bootstrap estimate
large = find(ori90(:,1)>=(90-range)/90*pi/2);
large = intersect(large,good);
F = F/var(abs(phaseDif(large,1)));
laStd = std(abs(phaseDif(large,1)))/pi*180;
laPh = abs(phaseDif(large,1))/pi*180;
laBootSE = std(bootstrp(1000,’std’,laPh));
text(0.85,1.05,strcat(’\sigma =’,num2str(laStd,4),...

’(’,num2str(laStd-laBootSE*2,4),’)’),...
’Units’,’normalized’)

% F-test
F = 1/F % because F should be >=1 for two-sided test
strcat(’df=(’,num2str(length(large)-1),’,’,num2str(length(small)-1),’)’)
P = 1-fcdf(F,length(large)-1,length(small)-1)
clear small large smStd laStd smPh laPh smBootSE laBootSE F P range

%% orientation vs phase and position

94

figure,
hold on
plot(ori90(good,1)/pi,abs(phaseDifPx(good,1)),’ok’);
plot(ori90(good,1)/pi,abs(posDifRel(good)),’ok’,’MarkerFaceColor’,’k’);
set(gca,’XTick’,[0,1/12,2/12,1/4,4/12,5/12,1/2], ...

’XTickLabelMode’,’manual’, ...
’XTickLabel’,[0,15,30,45,60,75,90]);

set(gca,’YTick’,[0,2,4,6,8,10,12], ...
’YTickLabelMode’,’manual’, ...
’YTickLabel’,[0,2/p*100,4/p*100,6/p*100,8/p*100,10/p*100,12/p*100])

xlabel(’RF orientation (deg)’,’FontSize’,14);
ylabel(’|disparity| (% of patch)’,’FontSize’,14);
title(’1st subunit’,’FontSize’,16);
grid on;
hold off;

range = 30; % ranges for analysis of variance in degree

% standard deviation of phases for cells with horizontal orientations
% in parenthesis: std+2*standard error obtained from bootstrap estimate
small = find(ori90(:,1)<=range/90*pi/2);
small = intersect(small,good);
F = var(abs(phaseDifPx(small,1)));
smStd = std(abs(phaseDifPx(small,1)))/pi*180;
smPh = abs(phaseDifPx(small,1))/pi*180;
smBootSE = std(bootstrp(1000,’std’,smPh));
text(0.02,1.05,strcat(’\sigma =’,num2str(smStd,4),...

’(’,num2str(smBootSE*2+smStd,4),’)’),...
’Units’,’normalized’)

% standard deviation of phases for cells with vertical orientations
% in parenthesis: std-2*standard error obtained from bootstrap estimate
large = find(ori90(:,1)>=(90-range)/90*pi/2);
large = intersect(large,good);
F = F/var(abs(phaseDifPx(large,1)));
laStd = std(abs(phaseDifPx(large,1)))/pi*180;
laPh = abs(phaseDifPx(large,1))/pi*180;
laBootSE = std(bootstrp(1000,’std’,laPh));
text(0.85,1.05,strcat(’\sigma =’,num2str(laStd,4),...

’(’,num2str(laStd-laBootSE*2,4),’)’),...

95

’Units’,’normalized’)

% F-test
F = 1/F % because F should be >=1 for two-sided test
strcat(’df=(’,num2str(length(large)-1),’,’,num2str(length(small)-1),’)’)
P = 1-fcdf(F,length(large)-1,length(small)-1)
clear small large smStd laStd smPh laPh smBootSE laBootSE F P range

%% frequency vs. phase
figure,
plot(f(good,1),abs(phaseDif(good,1))/pi,’ok’);
set(gca, ’XScale’,’log’)
set(gca,’YTick’,[0,1/4,1/2,3/4,1], ’YTickLabelMode’,’manual’, ...

’YTickLabel’,[0,45,90,135,180])
xlabel(’RF spatial frequency (c/px)’,’FontSize’,14);
ylabel(’|phase disparity| (deg PA)’,’FontSize’,14);
title(’1st subunit’,’FontSize’,16);
grid on;

%% frequency vs. phase and position
figure,
plot(f(good,1),abs(phaseDifPx(good,1)),’ok’);
hold on
plot(f(good,1),abs(posDif(good,1)),’ok’,’MarkerFaceColor’,’k’);
x = get(gca,’XLim’);
y = get(gca,’YLim’);
x = max(x(1),1/4/y(2)):0.001:x(2);
plot(x,1/4./x,’--’,’Color’,[0,0.5,0]);
x = get(gca,’XLim’);
x = max(x(1),1/2/y(2)):0.001:x(2);
plot(x,1/2./x,’-’,’Color’,[0.7,0,0]);
xlabel(’RF spatial frequency (c/px)’,’FontSize’,14);
ylabel(’|disparity| (px)’,’FontSize’,14);
title(’1st subunit’,’FontSize’,16);
legend(’phase’,’position’,’90◦ phase’,’180◦ phase’);
grid on;
hold off;

96

clear x y

%% phase vs. phase disparity (subunits)
figure,
hold on;
plot(phaseDif(good,1),phaseDif(good,2),’+k’);
x = get(gca,’XLim’);
y = get(gca,’YLim’);
% y = [x(:),y(:)];
set(gca,’XLim’,[min(y(1),x(1)),max(y(2),x(2))], ...

’YLim’,[min(y(1),x(1)),max(y(2),x(2))]);
y = get(gca,’YLim’);
plot(y,y,’-k’);
xlabel(’phase disparity 1st subunit (rad)’,’FontSize’,14);
ylabel(’phase disparity 2nd subunit (rad)’,’FontSize’,14)
grid on;
hold off;

clear x y

%% frequeny vs. frequency (subunits)
figure,
hold on;
plot(f(:,1),f(:,2),’+k’);
x = get(gca,’XLim’);
y = get(gca,’YLim’);
% y = [x(:),y(:)];
set(gca,’XLim’,[min(y(1),x(1)),max(y(2),x(2))], ...

’YLim’,[min(y(1),x(1)),max(y(2),x(2))]);
y = get(gca,’YLim’);
plot(y,y,’-k’);
xlabel(’spatial frequency 1st subunit (c/px)’,’FontSize’,14);
ylabel(’spatial frequency 2nd subunit (c/px)’,’FontSize’,14)
grid on;
hold off;

clear x y

97

%% position vs. position disparity (subunits)
figure,
hold on;
plot(posDif(good,1),posDif(good,2),’+k’);
x = get(gca,’XLim’);
y = get(gca,’YLim’);
% y = [x(:),y(:)];
set(gca,’XLim’,[min(y(1),x(1)),max(y(2),x(2))], ...

’YLim’,[min(y(1),x(1)),max(y(2),x(2))]);
y = get(gca,’YLim’);
plot(y,y,’-k’);
xlabel(’position disparity 1st subunit (px)’,’FontSize’,14);
ylabel(’position disparity 2nd subunit (px)’,’FontSize’,14)
grid on;
hold off;

clear x y

%% orientation vs. orientation (subunits)
figure,
hold on;
plot(ori(:,1),ori(:,2),’+k’);
x = get(gca,’XLim’);
y = get(gca,’YLim’);
% y = [x(:),y(:)];
set(gca,’XLim’,[min(y(1),x(1)),max(y(2),x(2))], ...

’YLim’,[min(y(1),x(1)),max(y(2),x(2))]);
y = get(gca,’YLim’);
plot(y,y,’-k’);
xlabel(’orientation 1st subunit (rad)’,’FontSize’,14);
ylabel(’orientation 2nd subunit (rad)’,’FontSize’,14);
grid on;
hold off;

clear x y

%% envelope width vs. envelope width (SVD components)

98

figure,
hold on;
sub1l = fitsSVD(1:4:397,3);
sub2l = fitsSVD(3:4:399,3);
plot(sub1l,sub2l,’+k’);
x = get(gca,’XLim’);
y = get(gca,’YLim’);
% y = [x(:),y(:)];
set(gca,’XLim’,[min(y(1),x(1)),max(y(2),x(2))], ...

’YLim’,[min(y(1),x(1)),max(y(2),x(2))]);
y = get(gca,’YLim’);
plot(y,y,’-k’);
xlabel(’envelope width 1st subunit (px)’,’FontSize’,14);
ylabel(’envelope width 2nd subunit (px)’,’FontSize’,14);
grid on;
hold off;

[r,P] = corrcoef(abs(sub1l(find(sub1l<10 & sub2l<10))), ...
abs(sub2l(find(sub1l<10 & sub2l<10))))

clear x y sub1l sub2l r P

%% envelope centre vs. envelope centre (SVD components)
figure,
hold on;
sub1l = 1:4:397;
sub2l = 3:4:399;
sub1r = 2:4:398;
sub2r = 4:4:400;
plot(fitsSVD(sub1l,1),fitsSVD(sub2l,1),’+k’);
plot(fitsSVD(sub1r,1),fitsSVD(sub2r,1),’ob’);
x = get(gca,’XLim’);
y = get(gca,’YLim’);
% y = [x(:),y(:)];
set(gca,’XLim’,[min(y(1),x(1)),max(y(2),x(2))], ...

’YLim’,[min(y(1),x(1)),max(y(2),x(2))]);
y = get(gca,’YLim’);
plot(y,y,’-k’);
xlabel(’envelope centre 1st subunit (px)’,’FontSize’,14);

99

ylabel(’envelope centre 2nd subunit (px)’,’FontSize’,14);
grid on;
hold off;

clear x y sub1l sub2l

%% phase difference of RFs (subunits)
figure,
hold on;
pdlrall = phaseDifLR(good,:);
[n(:,1),xout] = hist(abs(pdlrall(:,1))/pi,15);
[n(:,2),xout] = hist(abs(pdlrall(:,2))/pi,xout);
bar(xout,n,1,’stacked’)
c = get(gca,’Children’);
set(c(1),’FaceColor’,[.7,.9,.7])
set(c(2),’FaceColor’,[.4,.6,.4])
set(gca,’XTick’,[0,0.5,1], ’XTickLabelMode’,’manual’, ...

’XTickLabel’,[0,90,180],’FontSize’,12);
xlabel(’|1st - 2nd subunit phase| (deg PA)’,’FontSize’,14)
legend(’left’,’right’), legend(’boxoff’)
hold off;

clear pdlrall n xout c

showPrince.m

% script containing collection of diagrams to visualise RDS data analogous
% to Prince et al. (2002)
% it is not recommended to run this script in the command line since
% several figure windows will open simultaneously, use cell mode instead to
% run selected cells containing one diagram each
% cell "prolog" needs to be run once before diagrams can be constructed
% for final diagrams which also display data from Prince see directory figs

% version 1.0 {Sebastian Bitzer}

%% prolog
load(’RDSFits1310i1000o0d20dD0.25.mat’,’parsRDS’,’R2RDS’,’confRDS’,...

100

’goodCellsRDS’);
load(’RDSAct1310i1000o0d20dD0.25.mat’,’DDI’,’dispActM’,’dispAct’,...

’Rmax’,’Rmin’)

%% hist dominant monocular response / uncorrelated response

figure,
hold on;
[n,x] = hist(MUratio, 0.1:0.2:8);
bar(x,n,1,’FaceColor’,’none’);
plot(ones(1,max(n)+6),(0:max(n)+5),’--k’);
axis([0,8,0,max(n)+5]);
xlabel(’dominant monocular response / uncorrelated response’, ...

’FontSize’, 16);
ylabel(’number of cells’,’FontSize’, 16);
hold off;

%% DDI histogram
figure,
for i = 1:size(dispActM,2)

[anovaP(i), tab] = anova1(squeeze(dispAct(:,:,i))’,[]’,’off’);
Findex(i) = tab{2,4}/(tab{3,4}+tab{2,4});

end
hist(Findex), xlabel(’F_{index}’)
figure
sig = find(anovaP<0.01);
[n(:,1),xout] = hist(DDI(sig),15);
[n(:,2),xout] = hist(DDI(setdiff(1:100,sig)),xout);
bar(xout,n,1,’stacked’)
c = get(gca,’Children’);
set(c(1),’FaceColor’,[.4,.6,.4])
set(c(2),’FaceColor’,[.7,.9,.7])
legend(’P<0.01’,’P>0.01’), legend(’boxoff’)

clear anovaP tab Findex i n sig xout c

%% DDI vs. mean firing

101

figure
hold on
plot(mean(squeeze(mean(dispAct))),DDI,’sk’,’MarkerFaceColor’,’k’)
figure
plot(mean(squeeze(mean(dispAct))),(Rmax-Rmin)./(Rmax+Rmin),...

’sk’,’MarkerFaceColor’,’k’)
hold off

%% position vs. phase
figure(’Position’,[300,300,400,400]);

phase = parsRDS(goodCellsRDS,5);
phase = rem(phase,2*pi);
big = find(abs(phase)>pi);
phase(big) = phase(big) - sign(phase(big))*2*pi;
pos = parsRDS(goodCellsRDS,2);

plot(pos, phase./pi, ’s’, ...
’MarkerEdgeColor’,’k’, ...
’MarkerFaceColor’,’k’, ...
’MarkerSize’,5);

xlabel(’Gabor Mean Position (pixel)’,’FontSize’,14);
ylabel(’Gabor Phase (multiples of \pi)’,’FontSize’,14);

big = ceil(max(abs(pos)));
axis([-big,big,-1.1,1.1]);
set(gca,’YTick’,[-1,-0.5,0,0.5,1], ’YTickLabelMode’,’manual’,...

’YTickLabel’,[-1,-0.5,0,0.5,1])
x = get(gca,’XLim’);
y = get(gca,’YLim’);
line(x,[0,0],’LineStyle’,’:’,’Color’,’k’)
line([0,0],y,’LineStyle’,’:’,’Color’,’k’)

all = length(phase);
{
strcat(’TI:’,num2str(length(find(phase>3/4*pi | phase<-3/4*pi))/all,2))
strcat(’TE:’,num2str(length(find(phase>-1/4*pi & phase<1/4*pi))/all,2))
strcat(’NE:’,num2str(length(find(phase>-3/4*pi & phase<-1/4*pi))/all,2))
strcat(’FA:’,num2str(length(find(phase>1/4*pi & phase<3/4*pi))/all,2))

102

}

clear big x y all pos phase

%% position vs. phase (px)
figure,

phase = parsRDS(goodCellsRDS,5);
phase = rem(phase,2*pi);
big = find(abs(phase)>pi);
phase(big) = phase(big) - sign(phase(big))*2*pi;
phase = -phase/(2*pi)./parsRDS(goodCellsRDS,4);
pos = parsRDS(goodCellsRDS,2);
big = max(abs(phase))+0.5;

subplot(2,2,1),
hist(pos);
axis([-big,big,get(gca,’YLim’)])

subplot(2,2,3),
hold on
plot(pos, phase,’.k’);
axis([-big,big,-big,big])
plot([-big,big],[0,0],’:k’)
plot([0,0],[-big,big],’:k’)
set(gca,’DataAspectRatio’,[1,1,1],’PlotBoxAspectRatio’,[1,1,1])
xlabel(’position shift (px)’,’FontSize’,14);
ylabel(’phase shift (px)’,’FontSize’,14);
hold off;

subplot(2,2,4),
hist(phase);
axis([-big,big,get(gca,’YLim’)])
set(gca,’XDir’,’reverse’)
view(90,90);

’corrcoef(pos,phase):’
[r,P] = corrcoef(pos,phase)

clear big r P phase pos

%% parameter comparison

103

figure,
subplot(4,4,1),

hist(parsRDS(goodCellsRDS,2));
subplot(4,4,5),

plot(parsRDS(goodCellsRDS,2), parsRDS(goodCellsRDS,5)./pi, ’o’, ...
’MarkerEdgeColor’,’k’, ...
’MarkerFaceColor’,’w’, ...
’MarkerSize’,5);

subplot(4,4,6),
hist(parsRDS(goodCellsRDS,5));

subplot(4,4,9),
plot(parsRDS(goodCellsRDS,2), abs(parsRDS(goodCellsRDS,3)), ’o’, ...

’MarkerEdgeColor’,’k’, ...
’MarkerFaceColor’,’w’, ...
’MarkerSize’,5);

subplot(4,4,10),
plot(parsRDS(goodCellsRDS,5)./pi, abs(parsRDS(goodCellsRDS,3)), ’o’, ...

’MarkerEdgeColor’,’k’, ...
’MarkerFaceColor’,’w’, ...
’MarkerSize’,5);

subplot(4,4,11),
hist(abs(parsRDS(goodCellsRDS,3)));

subplot(4,4,13),
plot(parsRDS(goodCellsRDS,2), parsRDS(goodCellsRDS,4), ’o’, ...

’MarkerEdgeColor’,’k’, ...
’MarkerFaceColor’,’w’, ...
’MarkerSize’,5);

set(gca,’YScale’,’log’);
subplot(4,4,14),

plot(parsRDS(goodCellsRDS,5)./pi, parsRDS(goodCellsRDS,4), ’o’, ...
’MarkerEdgeColor’,’k’, ...
’MarkerFaceColor’,’w’, ...
’MarkerSize’,5);

set(gca,’YScale’,’log’);
subplot(4,4,15),

plot(abs(parsRDS(goodCellsRDS,3)), parsRDS(goodCellsRDS,4), ’o’, ...
’MarkerEdgeColor’,’k’, ...
’MarkerFaceColor’,’w’, ...
’MarkerSize’,5);

set(gca,’YScale’,’log’);

104

subplot(4,4,16),
hist(parsRDS(goodCellsRDS,4));
set(gca,’XScale’,’log’);

%% phase histogram in polar plot
figure,
[trose,r] = rose(parsRDS(goodCellsRDS,5),20);
myPolar(trose,r);
set(get(gca,’Children’),’LineWidth’,3,’Color’,[0.08,0.17,0.55])

clear trose r

%% frequency vs. maximum interaction position
figure,

x = -20:.1:20;
for i=1:100

y = gabor1(parsRDS(i,:),x);
maxi(i) = x(find(max(y)==y));

end

semilogx(parsRDS(goodCellsRDS,4),abs(maxi(goodCellsRDS)),...
’sk’,’MarkerFaceColor’,[.7,.9,.7])

hold on
x = get(gca,’XLim’);
y = get(gca,’YLim’);
x = max(x(1),1/4/y(2)):0.001:x(2);
plot(x,1/4./x,’--’,’Color’,[0,0.5,0]);
x = get(gca,’XLim’);
x = max(x(1),1/2/y(2)):0.001:x(2);
plot(x,1/2./x,’-’,’Color’,[0.7,0,0]);

clear x y maxi

%% orientation vs. phase in PA
<see showRFAnalysis.m>

105

%% orientation vs. phase and pos
<see showRFAnalysis.m>

showAllRDS.m

% showAllRDS(cells,RDSActFile,FitFile)
%
% displays fitted tuning curves of cells given in "cells" together with
% data points, R-square, confidence intervals, DDI and activities to
% monocular and uncorrelated stimuli
% loads *ActM, DDI, parsRDS, confRDS and R2RDS from RDSActFile and FitFile,
% respectively; if these are not given, standard ones are chosen

% version 1.0 {Sebastian Bitzer}
function showAllRDS(cells,RDSActFile,FitFile)

if (nargin < 3)
FitFile = ’RDSFits1310i1000o0d20dD0.25.mat’;
if (nargin < 2)

RDSActFile = ’RDSAct1310i1000o0d20dD0.25.mat’;
end

end

load(RDSActFile,’*ActM’,’DDI’);
load(FitFile,’parsRDS’,’confRDS’,’R2RDS’);

dataX = -20:20;

figure(’Position’,[300,300,700,400]);

for i=1:length(cells)

clf
hold on;

plot(dataX, dispActM(:,cells(i))’, ’+b’,...
dataX, repmat(monoLActM(cells(i)),1,41),’r’,...
dataX, repmat(monoRActM(cells(i)),1,41),’g’,...
dataX, repmat(monoLActM(cells(i))+monoRActM(cells(i)),1,41),’m’,...
dataX, repmat(uncorrActM(cells(i)),1,41),’k’);

106

x = min(dataX):.1:max(dataX);
plot(x,gabor1(parsRDS(cells(i),:), x),’Color’,[0,0.5,0])

maxY = monoLActM(cells(i))+monoRActM(cells(i));
minY = min([monoLActM(cells(i)),monoRActM(cells(i)), ...

dispActM(:,cells(i))’]);
axis([dataX(1)-3,dataX(end)+40,minY-30,maxY+30]);
len = length(dataX);
set(gca,’XTick’, [dataX(1),dataX(ceil(len/4)),dataX(ceil(len/2)), ...

dataX(ceil(3*len/4)),dataX(end)])

d0 = parsRDS(cells(i),2);
plot([d0,d0],[minY,maxY-30],’--k’);

text(0.55,0.92,{[’cell: ’,num2str(cells(i))]},’FontSize’,16, ...
’VerticalAlignment’,’top’,’Units’,’normalized’)

info = cell(1,11);

info(1) = {[’R-square = ’,num2str(R2RDS(cells(i)),2)]};
info(2) = {’ ’};
info(3) = {’params (\pm confidence):’};
info(4) = {[’ A: ’,num2str(parsRDS(cells(i),1),4), ...

’ \pm’,num2str(confRDS(cells(i),1),4)]};
info(5) = {[’ d_0: ’,num2str(parsRDS(cells(i),2),3), ...

’ \pm’,num2str(confRDS(cells(i),2),3)]};
info(6) = {[’ \sigma: ’,num2str(parsRDS(cells(i),3),3), ...

’ \pm’,num2str(confRDS(cells(i),3),3)]};
info(7) = {[’ f: ’,num2str(parsRDS(cells(i),4),3)]};
info(8) = {[’ \phi: ’,num2str(parsRDS(cells(i),5),3), ...

’ \pm’,num2str(confRDS(cells(i),4),3)]};
info(9) = {[’ R_m: ’,num2str(parsRDS(cells(i),6),4), ...

’ \pm’,num2str(confRDS(cells(i),5),4)]};
info(10) = {’ ’};
info(11) = {[’DDI = ’,num2str(DDI(cells(i)),4)]};

text(0.55,0.82,info,’FontSize’,14, ’VerticalAlignment’,’top’, ...
’Units’,’normalized’)

107

legend(’disp’,’left’,’right’,’l+r’,’uncorr’,’fit’,’d0’, ...
’Location’,’BestOutside’)

legend(’boxoff’)

hold off;

waitforbuttonpress
end

108

	Introduction
	Binocular complex cells in primary visual cortex
	Optimally stable representations of natural visual stimuli

	Methods
	Fitting 1D and 2D-Gabor functions
	Gabor functions
	Nonlinear least squares and Levenberg-Marquardt
	Finding good starting values
	Goodness of fit

	Testing RFs with random dot stereograms
	Generating RDS
	Activities to RDS

	Disparities from SVD components of interaction profiles
	Binocular interaction profiles
	Calculating disparities from SVD components

	Evaluation of simulation results
	Subunit RFs and simple cells
	Basic properties
	Binocular properties

	Comparison to complex cell data from Anzai et al.
	SVD components as subunits
	Disparity encoding in component interaction profiles

	Comparison to RDS data from Prince et al.
	Activities to RDS and disparity sensitivity
	Tuning types described by position and phase

	Discussion
	Differences attributable to the binocular energy model
	Other discrepancies

	Source code

