Generating coherent patterns of activity from chaotic neural networks.

Sussillo, D. and Abbott, L. F.
Neuron, 63:544–557, 2009
DOI, Google Scholar


Neural circuits display complex activity patterns both spontaneously and when responding to a stimulus or generating a motor output. How are these two forms of activity related? We develop a procedure called FORCE learning for modifying synaptic strengths either external to or within a model neural network to change chaotic spontaneous activity into a wide variety of desired activity patterns. FORCE learning works even though the networks we train are spontaneously chaotic and we leave feedback loops intact and unclamped during learning. Using this approach, we construct networks that produce a wide variety of complex output patterns, input-output transformations that require memory, multiple outputs that can be switched by control inputs, and motor patterns matching human motion capture data. Our results reproduce data on premovement activity in motor and premotor cortex, and suggest that synaptic plasticity may be a more rapid and powerful modulator of network activity than generally appreciated.


The authors present a new way of reservoir computing. The setup apparently (haven’t read the paper) is very similar to the echo state networks of Herbert Jaeger (Jaeger and Haas, Science, 2004); the difference being the signal that is fed back to the reservoir from the output. While Jaeger fed back the target value f(t), they feed back the error between f(t) and the prediction given the current weights and reservoir activity. Key to their approach then is that they use a weight update rule which almost instantaneously provides weights that minimise the error. While this obviously leads to a very high variability of the weights across time steps at the start of learning, they argue that this variability diminishes during learning and weights eventually stabilise such that, when learning is switched off, the target dynamics is reproduced. They present a workaround which may make it possible to also learn non-periodic functions, but it’s clearly better suited for periodic functions.

I wonder how the learning is divided between feedback mechanism and weight adaptation (network model of Fig. 1A). In particular, it could well be that the feedback mechanism is solely responsible for successfull learning while the weights just settle to a more or less arbitrary setting once the dynamics is stabilised through the feedback (making weights uninterpretable). The authors also report how the synapses within the reservoir can be adapted to reproduce the target dynamics when no feedback signal is given from the network output (structure in Fig. 1C). Curiously, the credit assignment problem is solved by ignoring it: for the adaptation of reservoir synapses the same network level output error is used as for the adaptation of output weights.

It’s interesting that it works, but to know why and how it works would be good. The main argument of the authors why their proposal is better than echo state networks is that their proposal is more stable. They present corresponding results in Fig. 4, but they never tell us what they mean by stable. So how stable are the dynamics learnt by FORCE? How much can you perturb the network dynamics before it stops being able to reproduce the target dynamics. In other words, how far off the desired dynamics can you initialise the network state?

They have an interesting principal components analysis of network activity suggesting that the dynamics converges to the same values for the first principal components for different starting states, but I haven’t understood it well enough during this first read to comment further on that.

Leave a Reply

Your email address will not be published. Required fields are marked *